Answer
Verified
401.1k+ views
Hint: Here we will simplify the given expression using the basic properties. First will bring all the constants on one side of the equation and then simplify accordingly for the resultant required value for “x”.
Complete step-by-step solution:
Constants are the terms with fixed value such as the numbers it can be positive or negative whereas the variables are terms which do not have any fixed value and are denoted by small alphabets such as x, y, z, a, b, etc.
Take the given expression:
$\dfrac{x}{7} - 0.5 = 2.5$
Observe the above equation, move the term without any variable that is constant on the right hand side of the equation. Remember when you move any term from one side to another sign of the term also changes. Negative terms become positive.
$ \Rightarrow \dfrac{x}{7} = 2.5 + 0.5$
Simplify the above equation. When you add two positive terms, the resultant value is always positive.
$ \Rightarrow \dfrac{x}{7} = 3$
Perform cross multiplication in which the denominator of one side is multiplied with the numerator of the opposite side and vice versa.
$ \Rightarrow x = 3 \times 7$
Simplify the above equation.
$ \Rightarrow x = 21$
This is the required solution.
Note: Be careful about the sign convention when you move any term from one side to another. Always remember when any term is moved from one side to another then the sign of the term changes. Positive term becomes negative and negative term becomes positive. Be good in multiples and division. Since it is the most important fundamental to solve and simplify any mathematical expression. Remember multiples till twenty numbers.
Complete step-by-step solution:
Constants are the terms with fixed value such as the numbers it can be positive or negative whereas the variables are terms which do not have any fixed value and are denoted by small alphabets such as x, y, z, a, b, etc.
Take the given expression:
$\dfrac{x}{7} - 0.5 = 2.5$
Observe the above equation, move the term without any variable that is constant on the right hand side of the equation. Remember when you move any term from one side to another sign of the term also changes. Negative terms become positive.
$ \Rightarrow \dfrac{x}{7} = 2.5 + 0.5$
Simplify the above equation. When you add two positive terms, the resultant value is always positive.
$ \Rightarrow \dfrac{x}{7} = 3$
Perform cross multiplication in which the denominator of one side is multiplied with the numerator of the opposite side and vice versa.
$ \Rightarrow x = 3 \times 7$
Simplify the above equation.
$ \Rightarrow x = 21$
This is the required solution.
Note: Be careful about the sign convention when you move any term from one side to another. Always remember when any term is moved from one side to another then the sign of the term changes. Positive term becomes negative and negative term becomes positive. Be good in multiples and division. Since it is the most important fundamental to solve and simplify any mathematical expression. Remember multiples till twenty numbers.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE