
How do you solve \[\dfrac{3}{8}m+\dfrac{7}{8}=2m\]?
Answer
550.8k+ views
Hint: The degree of an equation is the highest power to which the variable in the equation is raised. If the degree of the equation is one, then it is a linear equation. To solve a linear equation, we have to take all the variable terms to one side of the equation, and leave constants to the other side. By this, we can find the solution value of the equation.
Complete step by step solution:
We are given the equation \[\dfrac{3}{8}m+\dfrac{7}{8}=2m\], we have to solve it. The highest power of the variable of the equation is 1, so the degree of the equation is also one. Hence, it is a linear equation. As we know to solve a linear equation, we have to take all the variable terms to one side of the equation and leave constants to the other side.
\[\dfrac{3}{8}m+\dfrac{7}{8}=2m\]
Subtracting \[2m\] from both sides of the above expression, we get
\[\Rightarrow \dfrac{3}{8}m+\dfrac{7}{8}-2m=0\]
Subtracting \[\dfrac{7}{8}\] from both sides of above equation, we get
\[\begin{align}
& \Rightarrow \dfrac{3}{8}m-2m=0-\dfrac{7}{8} \\
& \Rightarrow \dfrac{-13}{8}m=\dfrac{-7}{8} \\
\end{align}\]
Multiplying both sides of above equation by \[\dfrac{8}{-13}\], we get
\[\begin{align}
& \Rightarrow \dfrac{8}{-13}\left( \dfrac{-13}{8}m \right)=\dfrac{8}{-13}\left( \dfrac{-7}{8} \right) \\
& \Rightarrow m=\dfrac{7}{13} \\
\end{align}\]
Hence, the solution of the given equation is \[m=\dfrac{7}{13}\]
Note: We can check if the answer is correct or not by substituting the value in the given equation. From the given equation, we get the left-hand side as \[\dfrac{3}{8}m+\dfrac{7}{8}\], and right-hand side as \[2m\]. Substituting \[m=\dfrac{7}{13}\] in both sides of equation, we get LHS as \[\dfrac{3}{8}\left( \dfrac{7}{3} \right)+\dfrac{7}{8}=\dfrac{14}{13}\], and RHS as \[2\left( \dfrac{7}{13} \right)=\dfrac{14}{13}\]. As \[LHS=RHS\], the solution is correct.
Complete step by step solution:
We are given the equation \[\dfrac{3}{8}m+\dfrac{7}{8}=2m\], we have to solve it. The highest power of the variable of the equation is 1, so the degree of the equation is also one. Hence, it is a linear equation. As we know to solve a linear equation, we have to take all the variable terms to one side of the equation and leave constants to the other side.
\[\dfrac{3}{8}m+\dfrac{7}{8}=2m\]
Subtracting \[2m\] from both sides of the above expression, we get
\[\Rightarrow \dfrac{3}{8}m+\dfrac{7}{8}-2m=0\]
Subtracting \[\dfrac{7}{8}\] from both sides of above equation, we get
\[\begin{align}
& \Rightarrow \dfrac{3}{8}m-2m=0-\dfrac{7}{8} \\
& \Rightarrow \dfrac{-13}{8}m=\dfrac{-7}{8} \\
\end{align}\]
Multiplying both sides of above equation by \[\dfrac{8}{-13}\], we get
\[\begin{align}
& \Rightarrow \dfrac{8}{-13}\left( \dfrac{-13}{8}m \right)=\dfrac{8}{-13}\left( \dfrac{-7}{8} \right) \\
& \Rightarrow m=\dfrac{7}{13} \\
\end{align}\]
Hence, the solution of the given equation is \[m=\dfrac{7}{13}\]
Note: We can check if the answer is correct or not by substituting the value in the given equation. From the given equation, we get the left-hand side as \[\dfrac{3}{8}m+\dfrac{7}{8}\], and right-hand side as \[2m\]. Substituting \[m=\dfrac{7}{13}\] in both sides of equation, we get LHS as \[\dfrac{3}{8}\left( \dfrac{7}{3} \right)+\dfrac{7}{8}=\dfrac{14}{13}\], and RHS as \[2\left( \dfrac{7}{13} \right)=\dfrac{14}{13}\]. As \[LHS=RHS\], the solution is correct.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What are the 12 elements of nature class 8 chemistry CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Write a short biography of Dr APJ Abdul Kalam under class 8 english CBSE

Write a letter to the Municipal Commissioner to inform class 8 english CBSE

Compare the manure and fertilizer in maintaining the class 8 biology CBSE


