
How do you solve 5x < 2x – 6?
Answer
443.1k+ views
Hint: We have inequality given in the question and have to solve for the possible values of x. So, we will try to transpose and rearrange the terms such that we get x on one side of the inequality and constants on the other side. So, we will start by shifting 2x from RHS to LHS and then simplify further to get the answer.
Complete step by step answer:
We have been provided with an inequality 5x < 2x – 6 in the question. Since it is not a linear equation, we can have many values of x. By solving it, we will be able to find the possible values of x. In order to solve it, we will first transpose the term 2x to the RHS. Since we are transposing to the other side of the inequality, the sign of the term will change. So, 2x will become -2x. So, we will get
5x – 2x < – 6
Now, we can simplify 5x and 2x by subtracting them to obtain 3x. This will leave us with simplified inequality as below,
3x < -6
Since we require the value of x, we have to make 3x to x. To do that, we will divide both sides of the inequality by 3. Doing so, we will get
$\dfrac{3x}{3}<\dfrac{-6}{3}$
Since we know that $\dfrac{3}{3}=1$ and $\dfrac{-6}{3}=-2$ , we can rewrite the inequality as
x < -2
We have hence reached our final answer and x can have all values less than -2.
Note: In this question, we have followed the approach of simplifying the given inequality to obtain the values of x. We can also try to substitute random values of x and get a rough idea of possible values of x. Although this method is not recommended for easy level questions since it will simply lead to wastage of time. If we were to use this method, we could have started with x = -3 to obtain -15 < -6-6, which is possible.
Complete step by step answer:
We have been provided with an inequality 5x < 2x – 6 in the question. Since it is not a linear equation, we can have many values of x. By solving it, we will be able to find the possible values of x. In order to solve it, we will first transpose the term 2x to the RHS. Since we are transposing to the other side of the inequality, the sign of the term will change. So, 2x will become -2x. So, we will get
5x – 2x < – 6
Now, we can simplify 5x and 2x by subtracting them to obtain 3x. This will leave us with simplified inequality as below,
3x < -6
Since we require the value of x, we have to make 3x to x. To do that, we will divide both sides of the inequality by 3. Doing so, we will get
$\dfrac{3x}{3}<\dfrac{-6}{3}$
Since we know that $\dfrac{3}{3}=1$ and $\dfrac{-6}{3}=-2$ , we can rewrite the inequality as
x < -2
We have hence reached our final answer and x can have all values less than -2.
Note: In this question, we have followed the approach of simplifying the given inequality to obtain the values of x. We can also try to substitute random values of x and get a rough idea of possible values of x. Although this method is not recommended for easy level questions since it will simply lead to wastage of time. If we were to use this method, we could have started with x = -3 to obtain -15 < -6-6, which is possible.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

1 meter is equal to how many feet class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE
