Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

How do you solve $-2-3x=-17$?

Answer
VerifiedVerified
454.2k+ views
Hint: For this problem we need to calculate the value of $x$ for which the given equation is satisfied. For this we will apply the reverse arithmetic operations for the operations we have the given equation to eliminate them. We can observe that $2$ is in subtraction, so we will add $2$ on both sides of the above equation and then we can observe that $-3$ is in multiplication, so we will divide the whole equation with $-3$ and simplify the obtained equation to get the required result.

Complete step by step solution:
Given that, $-2-3x=-17$.
In the above equation, we can observe that $2$ is in subtraction, so adding the same $2$ on both sides of the above equation, then we will get
$\Rightarrow 2-2-3x=-17+2$
We know that $+a-a=0$, from this formula we can write the above equation as
$\Rightarrow -3x=-15$
In the above equation we can observe that $-3$ in multiplication. To solve the equation, we are going to divide the whole equation with the same $-3$ on both sides, then we will have
$\Rightarrow \dfrac{-3x}{-3}=\dfrac{-15}{-3}$
We know that $\dfrac{a}{a}=1$, applying this formula and simplifying the above equation, then we will get
$\Rightarrow x=5$
Hence the solution of the given equation $-2-3x=-17$ is $x=5$.

Note:
In some cases, they may ask to justify your answer, then we need to substitute the obtained result in the given equation and check whether the obtained solution satisfies the given equation or not.
Substituting $x=5$ in the given equation $-2-3x=-17$, then we will get
$\begin{align}
  & \Rightarrow -2-3\left( 5 \right)=-17 \\
 & \Rightarrow -2-15=-17 \\
 & \Rightarrow -17=-17 \\
 & \Rightarrow LHS=RHS \\
\end{align}$
Hence the obtained solution is correct.