
How do you integrate $x\times {{\tan }^{-1}}x$ ?
Answer
549k+ views
Hint: Integrating $x\times {{\tan }^{-1}}x$ means$\int{x\times {{\tan }^{-1}}xdx}$ ,
We use the following four formulae:
Integration by parts: \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx- \underset{{}}{\overset{{}}{\mathop \int }}\,\left(\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
$\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant
$\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$, where C is a constant
We first use (i) with u as ${{\tan }^{-1}}x$ and v as x, then use (ii) to find $\dfrac{du}{dx}$ and then use (iii) and (iv) to do further integration.
Complete step by step answer:
We first use integration by parts, which is \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx-\left( \underset{{}}{\overset{{}}{\mathop \int }}\,\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
for which we need the formula of differentiation of ${{\tan }^{-1}}x$ , which is $\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
So, applying (i) to $\int{x\times {{\tan }^{-1}}x}dx$ ,we have
$\Rightarrow \int{x\times {{\tan }^{-1}}xdx={{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}}$
Using $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant, we have:
$\Rightarrow {{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$ , (Where ${{C}_{1}}$ is a constant)
Now using (ii)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$
Since constant can be taken out of the integration without changing its value, we have:
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx$
Now, since +1 -1 =0, we can add it to any term and fractions numerator. Thus,
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}}dx$
We, know numerator distributes over a denominator, so \[\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}=\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}\]
Since ${{x}^{2}}$ is positive for all x, ${{x}^{2}}+1\ne 0$ . Therefore \[\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}=1-\dfrac{1}{{{x}^{2}}+1}\] as ${{x}^{2}}+1$ gets cancelled.
Thus, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx$
Integration distributes over addition that is, for any functions $f\text{ and }g$ we have $\left( \int{f+g} \right)=(\int{f)+\left( \int{g} \right)}$
So, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)$
Using (iii) again we have:
(Where ${{C}_{2}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)$
Now, using $\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$ , where C is a constant, we have:
(where ${{C}_{3}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-{{\tan }^{-1}}x+{{C}_{3}} \right)$
Since ${{C}_{1}},{{C}_{2}},{{C}_{3}}$ are all constants, they can be clubbed together as one constant and we write it as + C
Therefore, $\int{x\times {{\tan }^{-1}}xdx}={{\tan }^{-1}}x\left( \left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2} \right)-\dfrac{1}{2}x+C$
Note: Be careful with putting constants after doing integrals, it is advised to just add a C as constant after all the calculation instead of writing ${{C}_{1}},{{C}_{2}}$ etc, have written above for your understanding. That is a common place to make mistakes. Other than that, one must be extremely careful while applying the formulae as it's common to miss a term or two.
Alternatively,
You can substitute
$\begin{align}
& x=\tan \theta \\
& dx={{\sec }^{2}}\theta d\theta \\
& \int{x{{\tan }^{-1}}xdx=\int{\theta \tan \theta {{\sec }^{2}}\theta d\theta =\int{\dfrac{\theta \sin \theta }{{{\cos }^{3}}\theta }}}}d\theta \\
\end{align}$
And then use integration by parts.
We use the following four formulae:
Integration by parts: \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx- \underset{{}}{\overset{{}}{\mathop \int }}\,\left(\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
$\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant
$\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$, where C is a constant
We first use (i) with u as ${{\tan }^{-1}}x$ and v as x, then use (ii) to find $\dfrac{du}{dx}$ and then use (iii) and (iv) to do further integration.
Complete step by step answer:
We first use integration by parts, which is \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx-\left( \underset{{}}{\overset{{}}{\mathop \int }}\,\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
for which we need the formula of differentiation of ${{\tan }^{-1}}x$ , which is $\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
So, applying (i) to $\int{x\times {{\tan }^{-1}}x}dx$ ,we have
$\Rightarrow \int{x\times {{\tan }^{-1}}xdx={{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}}$
Using $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant, we have:
$\Rightarrow {{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$ , (Where ${{C}_{1}}$ is a constant)
Now using (ii)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$
Since constant can be taken out of the integration without changing its value, we have:
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx$
Now, since +1 -1 =0, we can add it to any term and fractions numerator. Thus,
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}}dx$
We, know numerator distributes over a denominator, so \[\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}=\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}\]
Since ${{x}^{2}}$ is positive for all x, ${{x}^{2}}+1\ne 0$ . Therefore \[\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}=1-\dfrac{1}{{{x}^{2}}+1}\] as ${{x}^{2}}+1$ gets cancelled.
Thus, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx$
Integration distributes over addition that is, for any functions $f\text{ and }g$ we have $\left( \int{f+g} \right)=(\int{f)+\left( \int{g} \right)}$
So, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)$
Using (iii) again we have:
(Where ${{C}_{2}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)$
Now, using $\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$ , where C is a constant, we have:
(where ${{C}_{3}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-{{\tan }^{-1}}x+{{C}_{3}} \right)$
Since ${{C}_{1}},{{C}_{2}},{{C}_{3}}$ are all constants, they can be clubbed together as one constant and we write it as + C
Therefore, $\int{x\times {{\tan }^{-1}}xdx}={{\tan }^{-1}}x\left( \left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2} \right)-\dfrac{1}{2}x+C$
Note: Be careful with putting constants after doing integrals, it is advised to just add a C as constant after all the calculation instead of writing ${{C}_{1}},{{C}_{2}}$ etc, have written above for your understanding. That is a common place to make mistakes. Other than that, one must be extremely careful while applying the formulae as it's common to miss a term or two.
Alternatively,
You can substitute
$\begin{align}
& x=\tan \theta \\
& dx={{\sec }^{2}}\theta d\theta \\
& \int{x{{\tan }^{-1}}xdx=\int{\theta \tan \theta {{\sec }^{2}}\theta d\theta =\int{\dfrac{\theta \sin \theta }{{{\cos }^{3}}\theta }}}}d\theta \\
\end{align}$
And then use integration by parts.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

