
How do you integrate $x\times {{\tan }^{-1}}x$ ?
Answer
563.1k+ views
Hint: Integrating $x\times {{\tan }^{-1}}x$ means$\int{x\times {{\tan }^{-1}}xdx}$ ,
We use the following four formulae:
Integration by parts: \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx- \underset{{}}{\overset{{}}{\mathop \int }}\,\left(\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
$\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant
$\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$, where C is a constant
We first use (i) with u as ${{\tan }^{-1}}x$ and v as x, then use (ii) to find $\dfrac{du}{dx}$ and then use (iii) and (iv) to do further integration.
Complete step by step answer:
We first use integration by parts, which is \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx-\left( \underset{{}}{\overset{{}}{\mathop \int }}\,\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
for which we need the formula of differentiation of ${{\tan }^{-1}}x$ , which is $\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
So, applying (i) to $\int{x\times {{\tan }^{-1}}x}dx$ ,we have
$\Rightarrow \int{x\times {{\tan }^{-1}}xdx={{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}}$
Using $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant, we have:
$\Rightarrow {{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$ , (Where ${{C}_{1}}$ is a constant)
Now using (ii)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$
Since constant can be taken out of the integration without changing its value, we have:
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx$
Now, since +1 -1 =0, we can add it to any term and fractions numerator. Thus,
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}}dx$
We, know numerator distributes over a denominator, so \[\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}=\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}\]
Since ${{x}^{2}}$ is positive for all x, ${{x}^{2}}+1\ne 0$ . Therefore \[\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}=1-\dfrac{1}{{{x}^{2}}+1}\] as ${{x}^{2}}+1$ gets cancelled.
Thus, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx$
Integration distributes over addition that is, for any functions $f\text{ and }g$ we have $\left( \int{f+g} \right)=(\int{f)+\left( \int{g} \right)}$
So, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)$
Using (iii) again we have:
(Where ${{C}_{2}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)$
Now, using $\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$ , where C is a constant, we have:
(where ${{C}_{3}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-{{\tan }^{-1}}x+{{C}_{3}} \right)$
Since ${{C}_{1}},{{C}_{2}},{{C}_{3}}$ are all constants, they can be clubbed together as one constant and we write it as + C
Therefore, $\int{x\times {{\tan }^{-1}}xdx}={{\tan }^{-1}}x\left( \left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2} \right)-\dfrac{1}{2}x+C$
Note: Be careful with putting constants after doing integrals, it is advised to just add a C as constant after all the calculation instead of writing ${{C}_{1}},{{C}_{2}}$ etc, have written above for your understanding. That is a common place to make mistakes. Other than that, one must be extremely careful while applying the formulae as it's common to miss a term or two.
Alternatively,
You can substitute
$\begin{align}
& x=\tan \theta \\
& dx={{\sec }^{2}}\theta d\theta \\
& \int{x{{\tan }^{-1}}xdx=\int{\theta \tan \theta {{\sec }^{2}}\theta d\theta =\int{\dfrac{\theta \sin \theta }{{{\cos }^{3}}\theta }}}}d\theta \\
\end{align}$
And then use integration by parts.
We use the following four formulae:
Integration by parts: \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx- \underset{{}}{\overset{{}}{\mathop \int }}\,\left(\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
$\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant
$\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$, where C is a constant
We first use (i) with u as ${{\tan }^{-1}}x$ and v as x, then use (ii) to find $\dfrac{du}{dx}$ and then use (iii) and (iv) to do further integration.
Complete step by step answer:
We first use integration by parts, which is \[\underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx-\left( \underset{{}}{\overset{{}}{\mathop \int }}\,\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)\]
for which we need the formula of differentiation of ${{\tan }^{-1}}x$ , which is $\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)$
So, applying (i) to $\int{x\times {{\tan }^{-1}}x}dx$ ,we have
$\Rightarrow \int{x\times {{\tan }^{-1}}xdx={{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}}$
Using $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii)$ , where C is a constant, we have:
$\Rightarrow {{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$ , (Where ${{C}_{1}}$ is a constant)
Now using (ii)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx$
Since constant can be taken out of the integration without changing its value, we have:
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx$
Now, since +1 -1 =0, we can add it to any term and fractions numerator. Thus,
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}}dx$
We, know numerator distributes over a denominator, so \[\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}=\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}\]
Since ${{x}^{2}}$ is positive for all x, ${{x}^{2}}+1\ne 0$ . Therefore \[\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}=1-\dfrac{1}{{{x}^{2}}+1}\] as ${{x}^{2}}+1$ gets cancelled.
Thus, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx$
Integration distributes over addition that is, for any functions $f\text{ and }g$ we have $\left( \int{f+g} \right)=(\int{f)+\left( \int{g} \right)}$
So, $\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)$
Using (iii) again we have:
(Where ${{C}_{2}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)$
Now, using $\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv)$ , where C is a constant, we have:
(where ${{C}_{3}}$ is a constant)
$\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-{{\tan }^{-1}}x+{{C}_{3}} \right)$
Since ${{C}_{1}},{{C}_{2}},{{C}_{3}}$ are all constants, they can be clubbed together as one constant and we write it as + C
Therefore, $\int{x\times {{\tan }^{-1}}xdx}={{\tan }^{-1}}x\left( \left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2} \right)-\dfrac{1}{2}x+C$
Note: Be careful with putting constants after doing integrals, it is advised to just add a C as constant after all the calculation instead of writing ${{C}_{1}},{{C}_{2}}$ etc, have written above for your understanding. That is a common place to make mistakes. Other than that, one must be extremely careful while applying the formulae as it's common to miss a term or two.
Alternatively,
You can substitute
$\begin{align}
& x=\tan \theta \\
& dx={{\sec }^{2}}\theta d\theta \\
& \int{x{{\tan }^{-1}}xdx=\int{\theta \tan \theta {{\sec }^{2}}\theta d\theta =\int{\dfrac{\theta \sin \theta }{{{\cos }^{3}}\theta }}}}d\theta \\
\end{align}$
And then use integration by parts.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

