
How do you integrate $\int {x{{\sec }^{ - 1}}xdx} $?
Answer
462.3k+ views
Hint: This question will be solved by integration by parts. In the integration by parts method if we integrate $f\left( x \right)g\left( x \right)$ we can write \[\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} \] where $f'\left( x \right) = \dfrac{{df\left( x \right)}}{{dx}}$. While choosing $f\left( x \right)$ and $g\left( x \right)$ choose in such a way that solving \[\int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} \] would be easier. For example, while integrating $x{e^x}$ our $f\left( x \right)$ would be $x$ and $g\left( x \right)$ will be ${e^x}$ so that solving \[\int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} \] is easier.
Complete step-by-step solution:
The integration by parts formula can be further written as integral of the product of any two functions = (First function × Integral of the second function) – Integral of [ (differentiation of the first function) × Integral of the second function]
The formula for integration by parts is
\[\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} \]
Where $f'\left( x \right) = \dfrac{{df\left( x \right)}}{{dx}}$.
In the given question we have to integrate $x{\sec ^{ - 1}}x$ by integration by parts method.
So, we can choose $f\left( x \right) = {\sec ^{ - 1}}x$ and $g\left( x \right) = x$.
Substituting the values in the formula for integration by parts, we get
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = {\sec ^{ - 1}}x\int {xdx} - \int {\dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right)\left( {\int {xdx} } \right)dx} \]
We know that $\dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{x\sqrt {{x^2} - 1} }}$ and $\int {xdx} = \dfrac{{{x^2}}}{2}$. Substituting these values in the above equation,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = {\sec ^{ - 1}}x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{1}{{x\sqrt {{x^2} - 1} }} \times \dfrac{{{x^2}}}{2}dx} \]
Simplify the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{2}\int {\dfrac{x}{{\sqrt {{x^2} - 1} }}dx} \]
Let $u = {x^2} - 1$. Then,
$ \Rightarrow du = 2xdx$
Divide both sides into both sides,
$ \Rightarrow \dfrac{1}{2}du = xdx$
Substitute the values,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{2}\int {\dfrac{1}{{2\sqrt u }}du} \]
Simplify the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{4}\int {{u^{ - \dfrac{1}{2}}}du} \]
Integrate the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{4}\dfrac{{{u^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C\]
Simplify the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt u }}{2} + C\]
Substitute back the value of $u$,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt {{x^2} - 1} }}{2} + C\]
Hence, the integral of $x{\sec ^{ - 1}}x$ is \[\dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt {{x^2} - 1} }}{2} + C\].
Note: Always remember the formula for integrating into the integration by parts method. Some people make mistakes while choosing f(x) and g(x) so carefully choose f(x) and g(x) such that integration would be easier to solve. Sometimes when we solve a problem, we find the function of L.H.S on the right-hand side, in that case, we should take our L.H.S as a variable like we did in the above question then it would be easier to solve. We just have to find the value of I.
Complete step-by-step solution:
The integration by parts formula can be further written as integral of the product of any two functions = (First function × Integral of the second function) – Integral of [ (differentiation of the first function) × Integral of the second function]
The formula for integration by parts is
\[\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} \]
Where $f'\left( x \right) = \dfrac{{df\left( x \right)}}{{dx}}$.
In the given question we have to integrate $x{\sec ^{ - 1}}x$ by integration by parts method.
So, we can choose $f\left( x \right) = {\sec ^{ - 1}}x$ and $g\left( x \right) = x$.
Substituting the values in the formula for integration by parts, we get
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = {\sec ^{ - 1}}x\int {xdx} - \int {\dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right)\left( {\int {xdx} } \right)dx} \]
We know that $\dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{x\sqrt {{x^2} - 1} }}$ and $\int {xdx} = \dfrac{{{x^2}}}{2}$. Substituting these values in the above equation,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = {\sec ^{ - 1}}x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{1}{{x\sqrt {{x^2} - 1} }} \times \dfrac{{{x^2}}}{2}dx} \]
Simplify the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{2}\int {\dfrac{x}{{\sqrt {{x^2} - 1} }}dx} \]
Let $u = {x^2} - 1$. Then,
$ \Rightarrow du = 2xdx$
Divide both sides into both sides,
$ \Rightarrow \dfrac{1}{2}du = xdx$
Substitute the values,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{2}\int {\dfrac{1}{{2\sqrt u }}du} \]
Simplify the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{4}\int {{u^{ - \dfrac{1}{2}}}du} \]
Integrate the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{4}\dfrac{{{u^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C\]
Simplify the terms,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt u }}{2} + C\]
Substitute back the value of $u$,
\[ \Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt {{x^2} - 1} }}{2} + C\]
Hence, the integral of $x{\sec ^{ - 1}}x$ is \[\dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt {{x^2} - 1} }}{2} + C\].
Note: Always remember the formula for integrating into the integration by parts method. Some people make mistakes while choosing f(x) and g(x) so carefully choose f(x) and g(x) such that integration would be easier to solve. Sometimes when we solve a problem, we find the function of L.H.S on the right-hand side, in that case, we should take our L.H.S as a variable like we did in the above question then it would be easier to solve. We just have to find the value of I.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
