
How do you graph \[y = 5x - 2?\]
Answer
551.4k+ views
Hint: The given question describes the operation of addition/ subtraction/ multiplication/ division. Also, this problem involves substituting the \[x\] values in the given equation to find the value \[y\]. Also, \[y\] is the function of \[x\]. By using \[x\] and \[y\] values we can easily draw the graph for the given equation. We have to assume the value \[x\] for solving the given question.
Complete step by step solution:
The given equation is shown below,
\[y = 5x - 2 \to \left( 1 \right)\]
We would draw the graph for the above equation. As a first step, we would assume the \[x\] value as given below,
\[x = ....... - 2, - 1,0,1,2,.......\]
Let’s substitute \[x = - 2\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times - 2} \right) - 2 \\
y = - 10 - 2 \\
y = - 12 \\
\]
Let’s substitute\[x = - 1\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times - 1} \right) - 2 \\
y = - 5 - 2 \\
y = - 7 \\
\]
Let’s substitute \[x = 0\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times 0} \right) - 2 \\
y = - 2 \\
\]
Let’s substitute \[x = 1\] in the equation \[\left( 1 \right)\], we get
\[\left( 1 \right) \to y = 5x - 2\]
\[
y = \left( {5 \times 1} \right) - 2 \\
y = 5 - 2 \\
y = 3 \\
\]
Let’s substitute \[x = 2\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times 2} \right) - 2 \\
y = 10 - 2 \\
y = 8 \\
\]
Let’s make a tabular column by using the \[x\] and \[y\] values,
By using this table we can easily draw the following graph,
The above figure represents the equation \[y = 5x - 2\]
Note: This type of question involves the operation of addition/ subtraction/ multiplication/ division. In this type of question, we would assume the \[x\] value, by using the \[x\] value we can easily find the \[y\] values. Note that the graph would be based on the equation of \[y\]. \[y\] is the function of \[x\] so, \[y\] can also be written as \[f\left( x \right)\]. When multiplying the different sign numbers remember the following things,
1) When a negative number is multiplied with the negative number the answer becomes a
positive number
2) When a positive number is multiplied with the positive number the answer becomes a
positive number.
3) When a positive number is multiplied with the negative number the answer becomes a
negative number.
Complete step by step solution:
The given equation is shown below,
\[y = 5x - 2 \to \left( 1 \right)\]
We would draw the graph for the above equation. As a first step, we would assume the \[x\] value as given below,
\[x = ....... - 2, - 1,0,1,2,.......\]
Let’s substitute \[x = - 2\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times - 2} \right) - 2 \\
y = - 10 - 2 \\
y = - 12 \\
\]
Let’s substitute\[x = - 1\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times - 1} \right) - 2 \\
y = - 5 - 2 \\
y = - 7 \\
\]
Let’s substitute \[x = 0\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times 0} \right) - 2 \\
y = - 2 \\
\]
Let’s substitute \[x = 1\] in the equation \[\left( 1 \right)\], we get
\[\left( 1 \right) \to y = 5x - 2\]
\[
y = \left( {5 \times 1} \right) - 2 \\
y = 5 - 2 \\
y = 3 \\
\]
Let’s substitute \[x = 2\] in the equation \[\left( 1 \right)\], we get
\[
\left( 1 \right) \to y = 5x - 2 \\
y = \left( {5 \times 2} \right) - 2 \\
y = 10 - 2 \\
y = 8 \\
\]
Let’s make a tabular column by using the \[x\] and \[y\] values,
| \[x\] | \[ - 2\] | \[ - 1\] | \[0\] | \[1\] | \[2\] |
| \[y\] | \[ - 12\] | \[ - 7\] | \[ - 2\] | \[3\] | \[8\] |
By using this table we can easily draw the following graph,
The above figure represents the equation \[y = 5x - 2\]
Note: This type of question involves the operation of addition/ subtraction/ multiplication/ division. In this type of question, we would assume the \[x\] value, by using the \[x\] value we can easily find the \[y\] values. Note that the graph would be based on the equation of \[y\]. \[y\] is the function of \[x\] so, \[y\] can also be written as \[f\left( x \right)\]. When multiplying the different sign numbers remember the following things,
1) When a negative number is multiplied with the negative number the answer becomes a
positive number
2) When a positive number is multiplied with the positive number the answer becomes a
positive number.
3) When a positive number is multiplied with the negative number the answer becomes a
negative number.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

