
How do you graph $y = - 4\tan x$?
Answer
541.8k+ views
Hint: We will write the given equation in the general format of the equation, and find the various parameters such as baseline, amplitude, and shift to plot the graph of the given equation.
Formula used: $y = a\tan (bx + c) + d$
Where $a$ is the amplitude of the equation which tells us the maximum and the minimum value the graph would go from the baseline value,
$b$ Is the period of the graph
$c$ Depicts the shift of the equation, positive shift represents that the graph is shifted towards the left and negative shift represents the graph shifting to right.
And $d$ is the baseline of the equation which tells us whether the graph is going upwards or downwards.
Complete step-by-step solution:
We have the given equation as:
$y = - 4\tan x$, which is a cosine function which has amplitude$ - 4$.
The period of the graph is $1$, since there is no coefficient present.
Since the value of $d$ is zero, we have the baseline in the graph as $0$.
Now the period of the function is found out as: $\dfrac{\pi }{b}$
Therefore, on substituting the value of $b$ as $1$, we get:
$period = \dfrac{\pi }{1} = \pi $
On using the scientific calculator to calculate the value of $\pi $, we get:
$period \approx 3.142$
Therefore, the graph of the following function can be plotted as:
This is the required solution for the tangent function $y = - 4\tan x$
Note: In this question we are using the tangent function. There also exists the sine function and cosine function which is represented as: $y = a\sin (bx + c) + d$ and $y = a\cos (bx + c) + d$ , which have the same properties that of a tangent function.
The sign of the shift $c$ represents in which direction the shift is taking place, it could be negative or positive for right and left respectively.
Formula used: $y = a\tan (bx + c) + d$
Where $a$ is the amplitude of the equation which tells us the maximum and the minimum value the graph would go from the baseline value,
$b$ Is the period of the graph
$c$ Depicts the shift of the equation, positive shift represents that the graph is shifted towards the left and negative shift represents the graph shifting to right.
And $d$ is the baseline of the equation which tells us whether the graph is going upwards or downwards.
Complete step-by-step solution:
We have the given equation as:
$y = - 4\tan x$, which is a cosine function which has amplitude$ - 4$.
The period of the graph is $1$, since there is no coefficient present.
Since the value of $d$ is zero, we have the baseline in the graph as $0$.
Now the period of the function is found out as: $\dfrac{\pi }{b}$
Therefore, on substituting the value of $b$ as $1$, we get:
$period = \dfrac{\pi }{1} = \pi $
On using the scientific calculator to calculate the value of $\pi $, we get:
$period \approx 3.142$
Therefore, the graph of the following function can be plotted as:
This is the required solution for the tangent function $y = - 4\tan x$
Note: In this question we are using the tangent function. There also exists the sine function and cosine function which is represented as: $y = a\sin (bx + c) + d$ and $y = a\cos (bx + c) + d$ , which have the same properties that of a tangent function.
The sign of the shift $c$ represents in which direction the shift is taking place, it could be negative or positive for right and left respectively.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

