
How do you expand ${\left( {y + x} \right)^4}$?
Answer
478.2k+ views
Hint: Here we will apply the Binomial Expansion to solve the given problem. The binomial theorem (or binomial expansion) describes the algebraic expansion of power of a binomial. According to the theorem, it is possible to expand the polynomial ${\left( {y + x} \right)^n}$. First, we have to Put the given value in the place of n and use the formula. Then solving this with the help of combination rule and factorial n and simplifying the result we will get the solution.
Formula used: Combination rule: \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\] ,
where $n \geqslant 0$, is an integer and each \[{}^n{C_k}\] is a positive integer known as binomial coefficient.
Complete answer:
In the above question, we can also write it as \[{\left( {y + x} \right)^4} = {\left( {x + y} \right)^4}\]
We need to expand \[{(x + y)^4}\]
Now we know that, according to binomial theorem it is possible to expand any nonnegative power of $x + y$ into a sum of the form
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where $n \geqslant 0$, is an integer and each \[{}^n{C_k}\] is a positive integer known as binomial coefficient.
Now we can use the binomial expansion putting \[n = 4\] we get,
\[ \Rightarrow {(x + y)^4}{ = ^4}{C_0}{x^4}{y^0}{ + ^4}{C_1}{x^{4 - 1}}{y^1}{ + ^4}{C_2}{x^{4 - 2}}{y^2} + { + ^4}{C_3}{x^{4 - 3}}{y^3}{ + ^4}{C_4}{x^{4 - 4}}{y^4}\]
Using, ${x^0} = 1$,
\[ \Rightarrow {(x + y)^4}{ = ^4}{C_0}{x^4}{ + ^4}{C_1}{x^{3}}{y^1}{ + ^4}{C_2}{x^{2}}{y^2} + { + ^4}{C_3}{x^{1}}{y^3}{ + ^4}{C_4}{y^4}\]
We can use the combination, \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], we get,
Solving we get,
\[ \Rightarrow {(x + y)^4}=\dfrac{{4!}}{{0!\left( {4 - 0} \right)!}}{x^4}+\dfrac{{4!}}{{1!\left( {4 - 1} \right)!}}{x^{3}}{y^1}+\dfrac{{4!}}{{2!\left( {4 - 2} \right)!}}{x^{2}}{y^2} + \dfrac{{4!}}{{3!\left( {4 - 3} \right)!}}{x^{1}}{y^3}+\dfrac{{4!}}{{4!\left( {4 - 4} \right)!}}{y^4}\]
Again, \[\Rightarrow{(x+y)^4}=\dfrac{{4!}}{{0!4!}}{x^4}+\dfrac{{4!}}{{1!3!}}{x^{3}}{y^1}+\dfrac{{4!}}{{2!2!}}{x^{2}}{y^2} + \dfrac{{4!}}{{3!1!}}{x^{1}}{y^3}+\dfrac{{4!}}{{4!0!}}{y^4}\]
Cancelling common factors in numerator and denominator, we get,
\[\Rightarrow{(x+y)^4}=1{x^4}+4{x^{3}}{y^1}+6{x^{2}}{y^2} + 4{x^{1}}{y^3}+1{y^4}\]
Simplifying we get,
\[\Rightarrow{(x+y)^4}={x^4}+4{x^{3}}{y^1}+6{x^{2}}{y^2} + 4{x^{1}}{y^3}+{y^4}\]
Hence expanding ${\left( {y + x} \right)^4}$ we get,
\[\Rightarrow{(x+y)^4}={x^4}+4{x^{3}}{y^1}+6{x^{2}}{y^2} + 4{x^{1}}{y^3}+{y^4}\]
Note:
In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Formula used: Combination rule: \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\] ,
where $n \geqslant 0$, is an integer and each \[{}^n{C_k}\] is a positive integer known as binomial coefficient.
Complete answer:
In the above question, we can also write it as \[{\left( {y + x} \right)^4} = {\left( {x + y} \right)^4}\]
We need to expand \[{(x + y)^4}\]
Now we know that, according to binomial theorem it is possible to expand any nonnegative power of $x + y$ into a sum of the form
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where $n \geqslant 0$, is an integer and each \[{}^n{C_k}\] is a positive integer known as binomial coefficient.
Now we can use the binomial expansion putting \[n = 4\] we get,
\[ \Rightarrow {(x + y)^4}{ = ^4}{C_0}{x^4}{y^0}{ + ^4}{C_1}{x^{4 - 1}}{y^1}{ + ^4}{C_2}{x^{4 - 2}}{y^2} + { + ^4}{C_3}{x^{4 - 3}}{y^3}{ + ^4}{C_4}{x^{4 - 4}}{y^4}\]
Using, ${x^0} = 1$,
\[ \Rightarrow {(x + y)^4}{ = ^4}{C_0}{x^4}{ + ^4}{C_1}{x^{3}}{y^1}{ + ^4}{C_2}{x^{2}}{y^2} + { + ^4}{C_3}{x^{1}}{y^3}{ + ^4}{C_4}{y^4}\]
We can use the combination, \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], we get,
Solving we get,
\[ \Rightarrow {(x + y)^4}=\dfrac{{4!}}{{0!\left( {4 - 0} \right)!}}{x^4}+\dfrac{{4!}}{{1!\left( {4 - 1} \right)!}}{x^{3}}{y^1}+\dfrac{{4!}}{{2!\left( {4 - 2} \right)!}}{x^{2}}{y^2} + \dfrac{{4!}}{{3!\left( {4 - 3} \right)!}}{x^{1}}{y^3}+\dfrac{{4!}}{{4!\left( {4 - 4} \right)!}}{y^4}\]
Again, \[\Rightarrow{(x+y)^4}=\dfrac{{4!}}{{0!4!}}{x^4}+\dfrac{{4!}}{{1!3!}}{x^{3}}{y^1}+\dfrac{{4!}}{{2!2!}}{x^{2}}{y^2} + \dfrac{{4!}}{{3!1!}}{x^{1}}{y^3}+\dfrac{{4!}}{{4!0!}}{y^4}\]
Cancelling common factors in numerator and denominator, we get,
\[\Rightarrow{(x+y)^4}=1{x^4}+4{x^{3}}{y^1}+6{x^{2}}{y^2} + 4{x^{1}}{y^3}+1{y^4}\]
Simplifying we get,
\[\Rightarrow{(x+y)^4}={x^4}+4{x^{3}}{y^1}+6{x^{2}}{y^2} + 4{x^{1}}{y^3}+{y^4}\]
Hence expanding ${\left( {y + x} \right)^4}$ we get,
\[\Rightarrow{(x+y)^4}={x^4}+4{x^{3}}{y^1}+6{x^{2}}{y^2} + 4{x^{1}}{y^3}+{y^4}\]
Note:
In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

