
How do you expand \[{\left( {x + y} \right)^{10}}\] ?
Answer
555.3k+ views
Hint: Here we will apply the Binomial Expansion to solve the given problem.
The binomial theorem (or binomial expansion) describes the algebraic expansion of power of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
First we have to Put the given value in the place of n and use the formula. Then solving this with the help of combination rule and factorial n and simplifying the result we will get the solution.
Formula used: Combination rule: \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where \[n \geqslant 0\], is an integer and each \[^n{C_k}\] is a positive integer known as binomial coefficient.
Complete step-by-step solution:
We need to expand \[{\left( {x + y} \right)^{10}}\].
Now we know that, according to binomial theorem it is possible to expand any nonnegative power of
\[x + y\] into a sum of the form
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\], where \[n \geqslant 0\], is an integer and each\[^n{C_k}\] is a positive integer known as binomial coefficient.
Now we can use the binomial expansion putting \[n = 10\] we get,
\[ \Rightarrow {(x + y)^{10}}{ = ^{10}}{C_0}{x^{10}}{y^0}{ + ^{10}}{C_1}{x^{10 - 1}}{y^1} + ...{ + ^{10}}{C_9}{x^{10 - 9}}{y^9}{ + ^{10}}{C_{10}}{x^0}{y^{10}}\]
Solving we get,
\[ \Rightarrow {(x + y)^{10}}{ = ^{10}}{C_0}{x^{10}}{ + ^{10}}{C_1}{x^9}{y^1} + ...{ + ^{10}}{C_9}x{y^9}{ + ^{10}}{C_{10}}{y^{10}}\],
[Using,\[{x^0} = 1\]].
Again, we can use the Combination rule,\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], we get,\[ \Rightarrow {(x + y)^{10}} = \dfrac{{10!}}{{0!\left( {10 - 0} \right)!}}{x^{10}} + \dfrac{{10!}}{{1!\left( {10 - 1} \right)!}}{x^9}{y^1} + .... + \dfrac{{10!}}{{9!\left( {10 - 9} \right)!}}x{y^9} + \dfrac{{10!}}{{10!\left( {10 - 10} \right)!}}{y^{10}}\]
Solving we get,
\[ \Rightarrow {(x + y)^{10}} = \dfrac{{10!}}{{0!10!}}{x^{10}} + \dfrac{{10!}}{{1!9!}}{x^9}{y^1} + ... + \dfrac{{10!}}{{9!1!}}x{y^9} + \dfrac{{10!}}{{10!0!}}{y^{10}}\]
Let us expanding the factorial term and we get
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + \dfrac{{10 \times 9!}}{{1 \times 9!}}{x^9}{y^1} + \dfrac{{10 \times 9 \times 8!}}{{2 \times 1 \times 8!}}{x^8}{y^2} + ... + \dfrac{{10 \times 9 \times 8!}}{{8! \times 2 \times 1}}{x^2}{y^8} + \dfrac{{10 \times 9!}}{{9! \times 1}}x{y^9} + {y^{10}}\]
[Using the definition of factorial \[n\], \[n! = n(n - 1)(n - 2)(n - 4).......2.1\] and \[0! = 1\]]
Simplifying we get,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + \dfrac{{10 \times 9}}{2}{x^8}{y^2} + ... + \dfrac{{10 \times 9}}{{2 \times 1}}{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Or,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + \left( {5 \times 9} \right){x^8}{y^2} + ... + \left( {5 \times 9} \right){x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Solving we get,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + 45{x^8}{y^2} + ... + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Hence expanding \[{\left( {x + y} \right)^{10}}\] we get,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + 45{x^8}{y^2} + ... + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
A combination is the number of ways we can combine things, when the order does not matter.
For a combination,
\[C\left( {n,r} \right){ = ^n}{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by \[n!\] and defined by
\[n! = n(n - 1)(n - 2)(n - 4).......2.1\]
The binomial theorem (or binomial expansion) describes the algebraic expansion of power of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
First we have to Put the given value in the place of n and use the formula. Then solving this with the help of combination rule and factorial n and simplifying the result we will get the solution.
Formula used: Combination rule: \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where \[n \geqslant 0\], is an integer and each \[^n{C_k}\] is a positive integer known as binomial coefficient.
Complete step-by-step solution:
We need to expand \[{\left( {x + y} \right)^{10}}\].
Now we know that, according to binomial theorem it is possible to expand any nonnegative power of
\[x + y\] into a sum of the form
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\], where \[n \geqslant 0\], is an integer and each\[^n{C_k}\] is a positive integer known as binomial coefficient.
Now we can use the binomial expansion putting \[n = 10\] we get,
\[ \Rightarrow {(x + y)^{10}}{ = ^{10}}{C_0}{x^{10}}{y^0}{ + ^{10}}{C_1}{x^{10 - 1}}{y^1} + ...{ + ^{10}}{C_9}{x^{10 - 9}}{y^9}{ + ^{10}}{C_{10}}{x^0}{y^{10}}\]
Solving we get,
\[ \Rightarrow {(x + y)^{10}}{ = ^{10}}{C_0}{x^{10}}{ + ^{10}}{C_1}{x^9}{y^1} + ...{ + ^{10}}{C_9}x{y^9}{ + ^{10}}{C_{10}}{y^{10}}\],
[Using,\[{x^0} = 1\]].
Again, we can use the Combination rule,\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], we get,\[ \Rightarrow {(x + y)^{10}} = \dfrac{{10!}}{{0!\left( {10 - 0} \right)!}}{x^{10}} + \dfrac{{10!}}{{1!\left( {10 - 1} \right)!}}{x^9}{y^1} + .... + \dfrac{{10!}}{{9!\left( {10 - 9} \right)!}}x{y^9} + \dfrac{{10!}}{{10!\left( {10 - 10} \right)!}}{y^{10}}\]
Solving we get,
\[ \Rightarrow {(x + y)^{10}} = \dfrac{{10!}}{{0!10!}}{x^{10}} + \dfrac{{10!}}{{1!9!}}{x^9}{y^1} + ... + \dfrac{{10!}}{{9!1!}}x{y^9} + \dfrac{{10!}}{{10!0!}}{y^{10}}\]
Let us expanding the factorial term and we get
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + \dfrac{{10 \times 9!}}{{1 \times 9!}}{x^9}{y^1} + \dfrac{{10 \times 9 \times 8!}}{{2 \times 1 \times 8!}}{x^8}{y^2} + ... + \dfrac{{10 \times 9 \times 8!}}{{8! \times 2 \times 1}}{x^2}{y^8} + \dfrac{{10 \times 9!}}{{9! \times 1}}x{y^9} + {y^{10}}\]
[Using the definition of factorial \[n\], \[n! = n(n - 1)(n - 2)(n - 4).......2.1\] and \[0! = 1\]]
Simplifying we get,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + \dfrac{{10 \times 9}}{2}{x^8}{y^2} + ... + \dfrac{{10 \times 9}}{{2 \times 1}}{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Or,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + \left( {5 \times 9} \right){x^8}{y^2} + ... + \left( {5 \times 9} \right){x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Solving we get,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + 45{x^8}{y^2} + ... + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Hence expanding \[{\left( {x + y} \right)^{10}}\] we get,
\[ \Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + 45{x^8}{y^2} + ... + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
A combination is the number of ways we can combine things, when the order does not matter.
For a combination,
\[C\left( {n,r} \right){ = ^n}{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by \[n!\] and defined by
\[n! = n(n - 1)(n - 2)(n - 4).......2.1\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

