
How do you expand ${{\left( 3u-1 \right)}^{5}}$?
Answer
536.1k+ views
Hint: We first define the general form of binomial expansion for the indices value of n where ${{\left( a-b \right)}^{n}}={{a}^{n}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-.....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+.....+{{\left( -1 \right)}^{n}}{{b}^{n}}$. We replace the values with $a=3u,b=1$ and $n=5$. Then we use the formula of combinational ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$ to find the coefficients. We put the values and get the final solution for the expansion.
Complete step-by-step answer:
We use the formula for binomial expansion where we have
${{\left( a-b \right)}^{n}}={{a}^{n}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-.....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+.....+{{\left( -1 \right)}^{n}}{{b}^{n}}$.
The general term of the expansion is ${{t}_{r+1}}$, the ${{\left( r+1 \right)}^{th}}$ term of the series where ${{t}_{r+1}}={{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$.
We use the binomial expansion for the value of $n=5$.
We also replace the values for $a=3u,b=1$.
We put the values in the main equation of expansion and get
\[{{\left( 3u-1 \right)}^{5}}={{\left( 3u \right)}^{5}}-{}^{5}{{C}_{1}}{{\left( 3u \right)}^{5-1}}+{}^{5}{{C}_{2}}{{\left( 3u \right)}^{5-2}}-{}^{5}{{C}_{3}}{{\left( 3u \right)}^{5-3}}+{}^{5}{{C}_{4}}{{\left( 3u \right)}^{5-4}}-1\].
Now we know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
Putting the respective values, we get \[{}^{5}{{C}_{2}}={}^{5}{{C}_{3}}=\dfrac{5!}{2!\times 3!}=10;{}^{5}{{C}_{1}}={}^{5}{{C}_{4}}=5\].
Therefore, the expansion becomes
\[{{\left( 3u-1 \right)}^{5}}=243{{u}^{5}}-405{{u}^{4}}+270{{u}^{3}}-90{{u}^{2}}+15u-1\].
The expansion form of ${{\left( 3u-1 \right)}^{5}}$ is \[243{{u}^{5}}-405{{u}^{4}}+270{{u}^{3}}-90{{u}^{2}}+15u-1\].
Note: We can also use the concept of ${{\left( 3u-1 \right)}^{5}}={{\left( 3u-1 \right)}^{3}}{{\left( 3u-1 \right)}^{2}}$. Then we use the cubic and quadratic formulas of ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$ and ${{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}$ respectively. We multiply the values of the expansion to get the same solution.
Complete step-by-step answer:
We use the formula for binomial expansion where we have
${{\left( a-b \right)}^{n}}={{a}^{n}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-.....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+.....+{{\left( -1 \right)}^{n}}{{b}^{n}}$.
The general term of the expansion is ${{t}_{r+1}}$, the ${{\left( r+1 \right)}^{th}}$ term of the series where ${{t}_{r+1}}={{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$.
We use the binomial expansion for the value of $n=5$.
We also replace the values for $a=3u,b=1$.
We put the values in the main equation of expansion and get
\[{{\left( 3u-1 \right)}^{5}}={{\left( 3u \right)}^{5}}-{}^{5}{{C}_{1}}{{\left( 3u \right)}^{5-1}}+{}^{5}{{C}_{2}}{{\left( 3u \right)}^{5-2}}-{}^{5}{{C}_{3}}{{\left( 3u \right)}^{5-3}}+{}^{5}{{C}_{4}}{{\left( 3u \right)}^{5-4}}-1\].
Now we know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
Putting the respective values, we get \[{}^{5}{{C}_{2}}={}^{5}{{C}_{3}}=\dfrac{5!}{2!\times 3!}=10;{}^{5}{{C}_{1}}={}^{5}{{C}_{4}}=5\].
Therefore, the expansion becomes
\[{{\left( 3u-1 \right)}^{5}}=243{{u}^{5}}-405{{u}^{4}}+270{{u}^{3}}-90{{u}^{2}}+15u-1\].
The expansion form of ${{\left( 3u-1 \right)}^{5}}$ is \[243{{u}^{5}}-405{{u}^{4}}+270{{u}^{3}}-90{{u}^{2}}+15u-1\].
Note: We can also use the concept of ${{\left( 3u-1 \right)}^{5}}={{\left( 3u-1 \right)}^{3}}{{\left( 3u-1 \right)}^{2}}$. Then we use the cubic and quadratic formulas of ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$ and ${{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}$ respectively. We multiply the values of the expansion to get the same solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

