Answer

Verified

389.7k+ views

**Hint:**Assume 1 as ‘a’ and 0.1 as ‘b’ and use the algebraic identity: - \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\], to simplify the given expression. Substitute the assumed values of ‘a’ and ‘b’, calculate the answer by simple addition and subtraction.

**Complete step by step answer:**

Here, we have been provided with the expression \[{{\left( 1-0.1 \right)}^{3}}\] and we have been asked to expand it. So, let us see how to calculate the value of this expression by expansion.

Now, as we can see that the exponent of the binomial term \[\left( 1-0.1 \right)\] is 3, that means we have to multiply this term three times. So, assuming 1 as ‘a’ and 0.1 as ‘b’ we have,

\[\Rightarrow {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\]

Let us multiply the first two terms, so we have,

\[\begin{align}

& \Rightarrow {{\left( a-b \right)}^{3}}=\left[ \left( a-b \right)\left( a-b \right) \right]\times \left( a-b \right) \\

& \Rightarrow {{\left( a-b \right)}^{3}}=\left[ {{a}^{2}}-ab-ba+{{b}^{2}} \right]\times \left( a-b \right) \\

\end{align}\]

Here, ab = ba, so we get,

\[\Rightarrow {{\left( a-b \right)}^{3}}=\left[ {{a}^{2}}-2ab+{{b}^{2}} \right]\times \left( a-b \right)\]

Now, let us multiply these two expressions in the R.H.S. to form a general expression, so we get,

\[\begin{align}

& \Rightarrow {{\left( a-b \right)}^{3}}=\left( {{a}^{3}}-{{a}^{2}}b-2{{a}^{2}}b+2a{{b}^{2}}+{{b}^{2}}a-{{b}^{3}} \right) \\

& \Rightarrow {{\left( a-b \right)}^{3}}=\left( {{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \right) \\

\end{align}\]

So, here we have obtained the formula for the whole cube of the difference of two terms ‘a’ and ‘b’. Therefore, substituting back the initially assumed values of ‘a’ and ‘b’, we get,

\[\Rightarrow {{\left( 1-0.1 \right)}^{3}}=\left( {{1}^{3}}-{{\left( 0.1 \right)}^{3}}-3\left( 0.1 \right){{\left( 1 \right)}^{2}}+3\left( 1 \right){{\left( 0.1 \right)}^{2}} \right)\]

On simplification we get,

\[\begin{align}

& \Rightarrow {{\left( 1-0.1 \right)}^{3}}=\left( 1-0.001-0.3+0.03 \right) \\

& \Rightarrow {{\left( 1-0.1 \right)}^{3}}=0.729 \\

\end{align}\]

**Hence, the value of the given expression is 0.729.**

**Note:**One may note that you can also get the answer by cubing 0.9 because 1 – 0.1 = 0.9. Note these algebraic identities are generally used to make our calculation easy. For example, if we have to calculate the value of \[{{99}^{3}}\] then we can simplify it as \[99=100-1\]. This will make our calculations much easier because it is difficult to multiply 99 three times. You must remember other algebraic identities also like: - \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\], \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] etc. because these are basic identities used in algebra.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who was the first to raise the slogan Inquilab Zindabad class 8 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

One cusec is equal to how many liters class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

A resolution declaring Purna Swaraj was passed in the class 8 social science CBSE