Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

How do you condense log40log4?

Answer
VerifiedVerified
471.3k+ views
like imagedislike image
Hint: Logarithms have special properties associated and calculations are carried in a unique way. There are some formulae for their calculation which are as follows:
loga+logb=logab
logalogb=logab
Using these formulae, we can solve most logarithm questions without actually using logarithm tables.

Complete step by step answer:
According to the question we have to condense log40log4 which means we have to simplify as much as possible
We will solve it part by part, firstly we will take log40
Using the above formula we will simplify log40,
log40 can be written as log(4×10) or log(5×8), the selection will depend on whether the factors will help simplify the expression or not. If we take log(4×10), then using the logarithm formula we can expand it. It has factors which can help in simplifying the expression whereas log(5×8)will add more to the complexity of the expression. So we will use log(4×10).
So, log40=log(4×10)
Using the formula, logab=loga+logb
We have, log(4×10)=log4+log10
Now, taking the other part of the expression that is log4.
We can now see clearly that the simplification of log40 which has log4as a result expansion using the logarithm formula can be cancelled using the log4 from the remaining equation.
So the choice of factor we chose is favourable for us in simplifying the given expression.
We have,
log40log4
(log4+log10)log4
log4 will get cancelled and what is left is the simplified version of the expression
log10
Now, depending upon the base of the logarithm whether it 10 or ‘e’, the value will differ, that is
log1010=1
loge10=2.302

Note: Logarithm function should be dealt carefully. Also the expression can be simplified using another logarithm formula which is logalogb=logab.
So, log40log4
log404
log10
log10 is the simplified or the condensed form. And depending upon the base of the logarithm whether it 10 or ‘e’, the value will differ, that is
log1010=1
loge10=2.302