Answer
Verified
438.3k+ views
Hint: We must know that the redox reaction is a chemical reaction in which electrons are transferred between two reactant species participating in the reaction. Therefore, first, we have to write the reaction between Potassium ferricyanide and \[{H_2}{O_2}\].
Redox reactions are based on electron transfers and electron density around an atom will change during redox reactions. Electron density will decrease in case of oxidation and an increase in case of reduction.
Complete step by step answer:
From the basic knowledge of redox reaction we can write the chemical reaction of Potassium ferricyanide and\[{H_2}{O_2}\]
Therefore,
$2{K_3}\left[ {Fe{{(CN)}_6}} \right] + 2KOH + {H_2}{O_2} \to 2{K_4}\left[ {Fe{{(CN)}_6}} \right] + 2{H_2}O + {O_2}$
An alkaline solution of potassium ferricyanide oxidizes hydrogen peroxide into oxygen gas and reduces itself into potassium ferrocyanide.
Iron is undergoing reduction and oxygen in hydrogen peroxide is undergoing oxidation.
We can understand that the potassium ferricyanide acts as an oxidizing agent and hydrogen peroxide acts as a reducing agent in this redox reaction.
Hence, option D is the correct answer.
Additional information:
The electron acceptor species is known as the oxidizing agent while the electron donor species is known as reducing agent.
The oxidizing agent undergoes a reduction of itself while the reducing agent undergoes oxidation of itself.
The oxidation number of participating species will change in redox reactions.
The addition of electronegative elements will cause oxidation and the addition of electropositive elements will cause reduction of the species.
Any species having a maximum oxidation state always acts as oxidizing agent only while any species having a minimum oxidation state, always acts as reducing agent only.
Note:
We must know that the Electron acceptor species is known as an oxidizing agent while the electron donor species are known as a reducing agent. The oxidation number will increase in case of oxidation and the oxidation number will decrease in case of reduction.
Therefore, Redox reaction in ionic form
$F{e^{3 + }}{\text{ + O}}_2^{2 - } \to {\text{ F}}{{\text{e}}^{2 + }}{\text{ + O}}_2^0$
Oxidation number of iron will decrease and the oxidation number of oxygen will increase.
Redox reactions are based on electron transfers and electron density around an atom will change during redox reactions. Electron density will decrease in case of oxidation and an increase in case of reduction.
Complete step by step answer:
From the basic knowledge of redox reaction we can write the chemical reaction of Potassium ferricyanide and\[{H_2}{O_2}\]
Therefore,
$2{K_3}\left[ {Fe{{(CN)}_6}} \right] + 2KOH + {H_2}{O_2} \to 2{K_4}\left[ {Fe{{(CN)}_6}} \right] + 2{H_2}O + {O_2}$
An alkaline solution of potassium ferricyanide oxidizes hydrogen peroxide into oxygen gas and reduces itself into potassium ferrocyanide.
Iron is undergoing reduction and oxygen in hydrogen peroxide is undergoing oxidation.
We can understand that the potassium ferricyanide acts as an oxidizing agent and hydrogen peroxide acts as a reducing agent in this redox reaction.
Hence, option D is the correct answer.
Additional information:
The electron acceptor species is known as the oxidizing agent while the electron donor species is known as reducing agent.
The oxidizing agent undergoes a reduction of itself while the reducing agent undergoes oxidation of itself.
The oxidation number of participating species will change in redox reactions.
The addition of electronegative elements will cause oxidation and the addition of electropositive elements will cause reduction of the species.
Any species having a maximum oxidation state always acts as oxidizing agent only while any species having a minimum oxidation state, always acts as reducing agent only.
Note:
We must know that the Electron acceptor species is known as an oxidizing agent while the electron donor species are known as a reducing agent. The oxidation number will increase in case of oxidation and the oxidation number will decrease in case of reduction.
Therefore, Redox reaction in ionic form
$F{e^{3 + }}{\text{ + O}}_2^{2 - } \to {\text{ F}}{{\text{e}}^{2 + }}{\text{ + O}}_2^0$
Oxidation number of iron will decrease and the oxidation number of oxygen will increase.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE