
Glucose has _________ optical isomers.
(A) 4
(B) 8
(C) 16
(D) 10
Answer
576.3k+ views
Hint: To answer this question, you must know the structure of glucose. Glucose is an aldohexose sugar-containing two chiral centres and other centres are chiral. A general formula for obtaining the maximum number of optical isomers is ${2^n}$, where n is the number of chiral centres.
Complete step by step solution:
Molecular formula of glucose is ${C_6}{H_{12}}{O_6}$. Structure of glucose is:
As you can see in the above structure of glucose there are six carbon atoms, hence it is an aldohexose. We usually consider glucose as D-glucose (dextrose). The D-isomer of glucose is the one whose carbon 2 is in the R configuration or has OH in the right-hand side. The mirror image of dextrose is L-glucose, having S configuration of carbon 2. Glucose contains one aldehydic carbon and five alcoholic carbons. It contains four chiral centres. A chiral centre is the one that has four different groups bonded to it in such a manner that it has a non-superimposable mirror image. Thus, in glucose, carbon 2, 3, 4 and 5 are chiral centres and carbon 1 and 6 are achiral. Now, the formula to obtain the maximum number of possible optical isomers is ${2^n}$, where n is the total number of chiral centres. Since, glucose has four chiral centres, n=4 and we get,
${2^4} = 16{\text{ }}$ optical isomers.
Hence, option (C) is correct.
Note: The 16 optical isomers of glucose are allose, altrose, galactose, glucose, gulose, idose, mannose, and tallose. The various conformations of glucopyranose rings are not considered since they are anomers rather than optical isomers.
Complete step by step solution:
Molecular formula of glucose is ${C_6}{H_{12}}{O_6}$. Structure of glucose is:
As you can see in the above structure of glucose there are six carbon atoms, hence it is an aldohexose. We usually consider glucose as D-glucose (dextrose). The D-isomer of glucose is the one whose carbon 2 is in the R configuration or has OH in the right-hand side. The mirror image of dextrose is L-glucose, having S configuration of carbon 2. Glucose contains one aldehydic carbon and five alcoholic carbons. It contains four chiral centres. A chiral centre is the one that has four different groups bonded to it in such a manner that it has a non-superimposable mirror image. Thus, in glucose, carbon 2, 3, 4 and 5 are chiral centres and carbon 1 and 6 are achiral. Now, the formula to obtain the maximum number of possible optical isomers is ${2^n}$, where n is the total number of chiral centres. Since, glucose has four chiral centres, n=4 and we get,
${2^4} = 16{\text{ }}$ optical isomers.
Hence, option (C) is correct.
Note: The 16 optical isomers of glucose are allose, altrose, galactose, glucose, gulose, idose, mannose, and tallose. The various conformations of glucopyranose rings are not considered since they are anomers rather than optical isomers.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

