Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

$g\left( x \right) = \int_0^x {{{\cos }^4}tdt} $, then$g\left( {x + \pi } \right)$equals
(A) $g\left( x \right) + g\left( \pi \right)$
(B) $g\left( x \right) - g\left( \pi \right)$
(C) $f\left( x \right)g\left( \pi \right)$
(D) $g\left( x \right)/g\left( \pi \right)$

Answer
VerifiedVerified
576k+ views
Hint: We have $\int_a^c {f\left( x \right)dx = \int_a^b {f\left( x \right)dx + \int_c^c {f\left( x \right)dx} } } $ we use this property of definite integral and try to get the required in terms of given options.

Complete step-by-step answer:
$g\left( x \right) = \int_0^x {{{\cos }^4}t\,dt} $
$g\left( {x + \pi } \right) = \int_0^{x + \pi } {{{\cos }^4}t\,dt} $
$ = \int_0^\pi {{{\cos }^4}t\,dt + \int_\pi ^{x + \pi } {{{\cos }^4}t\,dt} } $
Now let ${I_1} = \int_\pi ^{x + \pi } {{{\cos }^4}t\,dt} $
put $t = y + \pi $
$ \Rightarrow dt = dy$
If $t = \pi \Rightarrow y = 0$
$t = x + \pi \Rightarrow y = x$
${I_1} = \int_0^x {{{\cos }^4}\left( {\pi + y} \right)dy} $
$ = \int_0^x {{{\cos }^4}y\,dy = \int_0^x {{{\cos }^4}t\,dt} } $
$ = g\left( x \right)$
So $g\left( {x + \pi } \right) = g\left( x \right) + g\left( \pi \right)$
So, the correct answer is “Option A”.

Note: When we use a substitution method to solve any integral always remember that we must change the limits as well accordingly. If we do not change the limits after applying substitution methods then the final answer obtained will be wrong.