
Given that ${{\log }_{2}}3=a,{{\log }_{3}}5=b,{{\log }_{7}}2=c,$ then the logarithm of the number 63 to the base 140 in terms of a, b, c is ?
( a )$\dfrac{1+2ac}{2c+abc+1}$
( b ) $\dfrac{1-2ac}{2c-abc-1}$
( c ) $\dfrac{1-2ac}{2c+abc+1}$
( d ) $\dfrac{1+2ac}{2c-abc-1}$
Answer
576.9k+ views
Hint: For solving logarithmic related problems, we generally use some of the properties of logarithmic function such as ${{\log }_{N}}M=\dfrac{{{\log }_{a}}M}{{{\log }_{a}}N}$ , ${{\log }_{a}}(M\times N)={{\log }_{a}}M+{{\log }_{a}}N$ , ${{\log }_{a}}M=\dfrac{1}{{{\log }_{M}}a}$, ${{\log }_{a}}{{M}^{r}}=r.{{\log }_{a}}M$ and so others. Then we will arrange the terms of logarithmic in such a manner so that we can replace the complex log expression to the simplest form using standard results.
Complete step by step answer:
In question, we have given that ${{\log }_{2}}3=a$ , ${{\log }_{3}}5=b$ , ${{\log }_{7}}2=c$ , and we have to evaluate the value of ${{\log }_{140}}63$ .
We know that ${{\log }_{N}}M=\dfrac{{{\log }_{a}}M}{{{\log }_{a}}N}$ , ${{\log }_{a}}(M\times N)={{\log }_{a}}M+{{\log }_{a}}N$ and ${{\log }_{a}}M=\dfrac{1}{{{\log }_{M}}a}$ .
Now, we can write ${{\log }_{140}}63$ as $\dfrac{{{\log }_{2}}63}{{{\log }_{2}}140}$ .
Solving further, we get
$\dfrac{{{\log }_{2}}7\times 9}{{{\log }_{2}}5\times 4\times 7}$
Using property, ${{\log }_{a}}(M\times N)={{\log }_{a}}M+{{\log }_{a}}N$ in numerator and denominator both, we get
$\dfrac{{{\log }_{2}}7\times 9}{{{\log }_{2}}5\times 4\times 7}=\dfrac{{{\log }_{2}}7+{{\log }_{2}}9}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}$
As, $9={{3}^{2}}$ , we get
$\dfrac{{{\log }_{2}}7+{{\log }_{2}}9}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}=\dfrac{{{\log }_{2}}7+{{\log }_{2}}{{3}^{2}}}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}$……. ( i )
Now if, ${{\log }_{7}}2=c$ then also $\dfrac{1}{{{\log }_{2}}7}=c$, also ${{\log }_{2}}3=a$ and ${{\log }_{a}}{{M}^{r}}=r.{{\log }_{a}}M$ then ${{\log }_{2}}{{3}^{2}}=2\cdot {{\log }_{2}}3$,
Putting all these equations in ( i ) , we get
$\dfrac{{{\log }_{2}}7+{{\log }_{2}}{{3}^{2}}}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}=\dfrac{\dfrac{1}{c}+2a}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}$……. ( ii )
Now, ${{\log }_{2}}5=\dfrac{{{\log }_{3}}5}{{{\log }_{3}}2}$ and further \[\dfrac{{{\log }_{3}}5}{{{\log }_{3}}2}={{\log }_{2}}3\cdot {{\log }_{3}}5\] and ${{\log }_{2}}3=a,{{\log }_{3}}5=b,{{\log }_{7}}2=c,$
Putting all these equations in ( ii ) , we get
\[\dfrac{\dfrac{1}{c}+2a}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}=\dfrac{\dfrac{1}{c}+2a}{a\cdot b+{{\log }_{2}}{{2}^{2}}+\dfrac{1}{c}}\]…….. ( iii )
Now, ${{\log }_{2}}{{2}^{2}}=2\cdot {{\log }_{2}}2$ and ${{\log }_{a}}{{a}^{a}}=a$ so ${{\log }_{2}}{{2}^{2}}=2$ .
Putting value of ${{\log }_{2}}{{2}^{2}}$in equation ( iii ) , we get
\[\dfrac{\dfrac{1}{c}+2a}{a\cdot b+{{\log }_{2}}{{2}^{2}}+\dfrac{1}{c}}=\dfrac{\dfrac{1}{c}+2a}{a\cdot b+2+\dfrac{1}{c}}\] .
Solving further, we get
\[\dfrac{\dfrac{1}{c}+2a}{a\cdot b+2+\dfrac{1}{c}}=\dfrac{\dfrac{1+2ac}{c}}{\dfrac{abc+2c+1}{c}}\] .
On simplifying, we get
\[\dfrac{\dfrac{1+2ac}{c}}{\dfrac{abc+2c+1}{c}}=\dfrac{1+2ac}{1+abc+2c}\] .
So, the correct answer is “Option A”.
Note: Firstly, we must know all the properties of logarithmic functions such as ${{\log }_{N}}M=\dfrac{{{\log }_{a}}M}{{{\log }_{a}}N}$ , ${{\log }_{a}}(M\times N)={{\log }_{a}}M+{{\log }_{a}}N$ , ${{\log }_{a}}M=\dfrac{1}{{{\log }_{M}}a}$, ${{\log }_{a}}{{M}^{r}}=r.{{\log }_{a}}M$. One of the most basic tricks to solve logarithmic functions is to re – arrange the order of base value and variable value such that you left with some expression to which you can replace with some standard results.
Complete step by step answer:
In question, we have given that ${{\log }_{2}}3=a$ , ${{\log }_{3}}5=b$ , ${{\log }_{7}}2=c$ , and we have to evaluate the value of ${{\log }_{140}}63$ .
We know that ${{\log }_{N}}M=\dfrac{{{\log }_{a}}M}{{{\log }_{a}}N}$ , ${{\log }_{a}}(M\times N)={{\log }_{a}}M+{{\log }_{a}}N$ and ${{\log }_{a}}M=\dfrac{1}{{{\log }_{M}}a}$ .
Now, we can write ${{\log }_{140}}63$ as $\dfrac{{{\log }_{2}}63}{{{\log }_{2}}140}$ .
Solving further, we get
$\dfrac{{{\log }_{2}}7\times 9}{{{\log }_{2}}5\times 4\times 7}$
Using property, ${{\log }_{a}}(M\times N)={{\log }_{a}}M+{{\log }_{a}}N$ in numerator and denominator both, we get
$\dfrac{{{\log }_{2}}7\times 9}{{{\log }_{2}}5\times 4\times 7}=\dfrac{{{\log }_{2}}7+{{\log }_{2}}9}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}$
As, $9={{3}^{2}}$ , we get
$\dfrac{{{\log }_{2}}7+{{\log }_{2}}9}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}=\dfrac{{{\log }_{2}}7+{{\log }_{2}}{{3}^{2}}}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}$……. ( i )
Now if, ${{\log }_{7}}2=c$ then also $\dfrac{1}{{{\log }_{2}}7}=c$, also ${{\log }_{2}}3=a$ and ${{\log }_{a}}{{M}^{r}}=r.{{\log }_{a}}M$ then ${{\log }_{2}}{{3}^{2}}=2\cdot {{\log }_{2}}3$,
Putting all these equations in ( i ) , we get
$\dfrac{{{\log }_{2}}7+{{\log }_{2}}{{3}^{2}}}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}=\dfrac{\dfrac{1}{c}+2a}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}$……. ( ii )
Now, ${{\log }_{2}}5=\dfrac{{{\log }_{3}}5}{{{\log }_{3}}2}$ and further \[\dfrac{{{\log }_{3}}5}{{{\log }_{3}}2}={{\log }_{2}}3\cdot {{\log }_{3}}5\] and ${{\log }_{2}}3=a,{{\log }_{3}}5=b,{{\log }_{7}}2=c,$
Putting all these equations in ( ii ) , we get
\[\dfrac{\dfrac{1}{c}+2a}{{{\log }_{2}}5+{{\log }_{2}}4+{{\log }_{2}}7}=\dfrac{\dfrac{1}{c}+2a}{a\cdot b+{{\log }_{2}}{{2}^{2}}+\dfrac{1}{c}}\]…….. ( iii )
Now, ${{\log }_{2}}{{2}^{2}}=2\cdot {{\log }_{2}}2$ and ${{\log }_{a}}{{a}^{a}}=a$ so ${{\log }_{2}}{{2}^{2}}=2$ .
Putting value of ${{\log }_{2}}{{2}^{2}}$in equation ( iii ) , we get
\[\dfrac{\dfrac{1}{c}+2a}{a\cdot b+{{\log }_{2}}{{2}^{2}}+\dfrac{1}{c}}=\dfrac{\dfrac{1}{c}+2a}{a\cdot b+2+\dfrac{1}{c}}\] .
Solving further, we get
\[\dfrac{\dfrac{1}{c}+2a}{a\cdot b+2+\dfrac{1}{c}}=\dfrac{\dfrac{1+2ac}{c}}{\dfrac{abc+2c+1}{c}}\] .
On simplifying, we get
\[\dfrac{\dfrac{1+2ac}{c}}{\dfrac{abc+2c+1}{c}}=\dfrac{1+2ac}{1+abc+2c}\] .
So, the correct answer is “Option A”.
Note: Firstly, we must know all the properties of logarithmic functions such as ${{\log }_{N}}M=\dfrac{{{\log }_{a}}M}{{{\log }_{a}}N}$ , ${{\log }_{a}}(M\times N)={{\log }_{a}}M+{{\log }_{a}}N$ , ${{\log }_{a}}M=\dfrac{1}{{{\log }_{M}}a}$, ${{\log }_{a}}{{M}^{r}}=r.{{\log }_{a}}M$. One of the most basic tricks to solve logarithmic functions is to re – arrange the order of base value and variable value such that you left with some expression to which you can replace with some standard results.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

