
Given, \[\text{pH}\] of \[\text{0}\text{.1 M NaHC}{{\text{O}}_{\text{3}}}\] if \[{{\text{K}}_{\text{1}}}\text{ = 4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{ , }{{\text{K}}_{\text{2}}}\text{ = 4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-11}}}\] .
A) \[8.34\]
B) \[9.6\]
C) \[8.2\]
D) \[9.9\]
Answer
511.5k+ views
Hint: The \[\text{pH}\] for the polyprotic acid is equal to half the sum of the $\text{pka}$ values. The $\text{pka}$ values are calculated by taking the negative logarithm of dissociation constant.
$\text{pka=-log (ka)}$.
Complete answer:
Sodium bicarbonate \[\text{NaHC}{{\text{O}}_{\text{3}}}\] is a sodium salt of carbonic acid${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}$. Carbonic acid is a weak acid. It does not undergo complete dissociation. The carbonic acid is polyprotic. The carbonic acid dissociates to give the two protons in solution. The dissociation of carbonic acid is as follows:
The first dissociation of carbonic acid as follows,
${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+HCO}_{\text{3}}^{\text{-}}\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}=\dfrac{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ {{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}} \right]}$
The second dissociation constant for carbonic acid is as:
$\text{HCO}_{\text{3}}^{\text{-}}\text{ }\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+ CO}_{\text{3}}^{\text{2-}}\text{ }{{\text{K}}_{{{a}_{2}}}}=\dfrac{\left[ \text{CO}_{\text{3}}^{\text{2-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]}$
Here \[\text{NaHC}{{\text{O}}_{\text{3}}}\] undergoes the dissociation to give:
\[\text{NaHC}{{\text{O}}_{\text{3}}}\to \text{ HCO}_{3}^{-}\text{ + }{{\text{H}}^{\text{+}}}\]
From here let's find out the \[\text{pH}\] solution. To do so first calculate the $\text{pka}$ values for $\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}$ and $\text{ }{{\text{K}}_{{{a}_{2}}}}$.
$\text{pka}$Values are calculated by taking the negative log of the dissociation constant values.
$\text{pk}{{\text{a}}_{\text{1}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-7}}})$
We have, $\text{pk}{{\text{a}}_{\text{1}}}=6.34$
Similarly, $\text{pk}{{\text{a}}_{\text{2}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-11}}})$
We have, $\text{pk}{{\text{a}}_{2}}=10.34$
We know that for polyprotic acids the \[\text{pH}\]is equal to half the sum of $\text{pka}$values of first and second dissociation constant.
Therefore, $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{pK}{{\text{a}}_{\text{1}}}\text{ + pK}{{\text{a}}_{\text{2}}} \right)$
Let us substitute the values for $\text{pka}$values we get,
$\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{6}\text{.34 + 10}\text{.34} \right)$
Or $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( 16.68 \right)$.We get,
Or $\text{pH=8}\text{.34}$
Thus, the pH for the \[\text{0}\text{.1 M NaHC}{{\text{O}}_{\text{3}}}\]solution is $8.34$ .
The sodium bicarbonate is a salt of carbonic acid. Even though it liberates hydroxide ions. Its pH can be calculated using the dissociation constant of its corresponding carbonic acid.
Hence, (A) is the correct option.
Note:
There is one more method to determine the $\text{pH}$ solution. This method can be said as the condensed form of the above-explained method.
For polyprotic acid having more than one dissociation constant, the concentration of proton is given by,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{{{\text{K}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{2}}}}\]
Let's substitute the values we get,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{\text{(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{)(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-11}}}\text{)}}=\sqrt{2.025\times {{10}^{-17}}}\]
Thus, \[\left[ {{\text{H}}^{\text{+}}} \right]\text{=4}\text{.5}\times \text{1}{{\text{0}}^{\text{-9}}}\]’
We get, $\text{pH= -log }\left( 4.5\times {{10}^{-9}} \right)=8.34$
$\text{pka=-log (ka)}$.
Complete answer:
Sodium bicarbonate \[\text{NaHC}{{\text{O}}_{\text{3}}}\] is a sodium salt of carbonic acid${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}$. Carbonic acid is a weak acid. It does not undergo complete dissociation. The carbonic acid is polyprotic. The carbonic acid dissociates to give the two protons in solution. The dissociation of carbonic acid is as follows:
The first dissociation of carbonic acid as follows,
${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+HCO}_{\text{3}}^{\text{-}}\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}=\dfrac{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ {{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}} \right]}$
The second dissociation constant for carbonic acid is as:
$\text{HCO}_{\text{3}}^{\text{-}}\text{ }\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+ CO}_{\text{3}}^{\text{2-}}\text{ }{{\text{K}}_{{{a}_{2}}}}=\dfrac{\left[ \text{CO}_{\text{3}}^{\text{2-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]}$
Here \[\text{NaHC}{{\text{O}}_{\text{3}}}\] undergoes the dissociation to give:
\[\text{NaHC}{{\text{O}}_{\text{3}}}\to \text{ HCO}_{3}^{-}\text{ + }{{\text{H}}^{\text{+}}}\]
From here let's find out the \[\text{pH}\] solution. To do so first calculate the $\text{pka}$ values for $\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}$ and $\text{ }{{\text{K}}_{{{a}_{2}}}}$.
$\text{pka}$Values are calculated by taking the negative log of the dissociation constant values.
$\text{pk}{{\text{a}}_{\text{1}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-7}}})$
We have, $\text{pk}{{\text{a}}_{\text{1}}}=6.34$
Similarly, $\text{pk}{{\text{a}}_{\text{2}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-11}}})$
We have, $\text{pk}{{\text{a}}_{2}}=10.34$
We know that for polyprotic acids the \[\text{pH}\]is equal to half the sum of $\text{pka}$values of first and second dissociation constant.
Therefore, $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{pK}{{\text{a}}_{\text{1}}}\text{ + pK}{{\text{a}}_{\text{2}}} \right)$
Let us substitute the values for $\text{pka}$values we get,
$\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{6}\text{.34 + 10}\text{.34} \right)$
Or $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( 16.68 \right)$.We get,
Or $\text{pH=8}\text{.34}$
Thus, the pH for the \[\text{0}\text{.1 M NaHC}{{\text{O}}_{\text{3}}}\]solution is $8.34$ .
The sodium bicarbonate is a salt of carbonic acid. Even though it liberates hydroxide ions. Its pH can be calculated using the dissociation constant of its corresponding carbonic acid.
Hence, (A) is the correct option.
Note:
There is one more method to determine the $\text{pH}$ solution. This method can be said as the condensed form of the above-explained method.
For polyprotic acid having more than one dissociation constant, the concentration of proton is given by,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{{{\text{K}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{2}}}}\]
Let's substitute the values we get,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{\text{(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{)(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-11}}}\text{)}}=\sqrt{2.025\times {{10}^{-17}}}\]
Thus, \[\left[ {{\text{H}}^{\text{+}}} \right]\text{=4}\text{.5}\times \text{1}{{\text{0}}^{\text{-9}}}\]’
We get, $\text{pH= -log }\left( 4.5\times {{10}^{-9}} \right)=8.34$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
