
Given $\int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx=a}$ , then the value of $\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ is.
(a) ${{e}^{4}}-e$
(b) ${{e}^{4}}-a$
(c) $2{{e}^{4}}-a$
(d) $2{{e}^{4}}-e-a$
Answer
589.2k+ views
Hint: For solving this question we will use integration by parts formula to do the integration and then we will try to evaluate the given integral correctly.
Complete step-by-step solution -
Given:
It is given that, $\int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx=a}$ and we have to find the value of $\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ .
Now, let $I=\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ and $t=\sqrt{{{\log }_{e}}x}$ . Then,
$\begin{align}
& t=\sqrt{{{\log }_{e}}x} \\
& {{t}^{2}}={{\log }_{e}}x \\
& {{e}^{{{t}^{2}}}}=x \\
& 2t{{e}^{{{t}^{2}}}}dt=dx \\
\end{align}$
And, when $x=e$ then $t=1$ and when $x={{e}^{4}}$ then $t=2$ . Then,
\[\begin{align}
& I=\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}=\int\limits_{1}^{2}{2{{t}^{2}}{{e}^{{{t}^{2}}}}dt} \\
& \Rightarrow I=\int\limits_{1}^{2}{2{{t}^{2}}{{e}^{{{t}^{2}}}}dt} \\
\end{align}\]
Now, in the above expression of $I$ as $t$ is just a variable so we can write, \[\begin{align}
& I=\int\limits_{1}^{2}{2{{t}^{2}}{{e}^{{{t}^{2}}}}dt}=\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
& \Rightarrow I=\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
\end{align}\]
Now, before we proceed to solve the above integral we should know the formula of integration by parts which are written below:
$\int\limits_{l}^{u}{f\left( x \right)}\cdot g\left( x \right)dx=\left[ f\left( x \right)\int{g\left( x \right)}dx \right]_{l}^{u}-\int\limits_{l}^{u}{\left[ \left( \dfrac{d\left( f\left( x \right) \right)}{dx} \right)\cdot \left( \int{g\left( x \right)dx} \right) \right]dx}$
Now, we will use the above formula directly to evaluate the value of integral \[\int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx}\] . Where $f\left( x \right)={{e}^{{{x}^{2}}}}$ , $g\left( x \right)=1$ , $l=1$ and $u=2$ . Then,
\[\begin{align}
& \int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx}=a=\left[ {{e}^{{{x}^{2}}}}\int{dx} \right]_{1}^{2}-\int\limits_{1}^{2}{\left[ \left( \dfrac{d\left( {{e}^{{{x}^{2}}}} \right)}{dx} \right)\left( \int{dx} \right) \right]dx} \\
& \Rightarrow a=\left[ {{e}^{{{x}^{2}}}}\cdot x \right]_{1}^{2}-\int\limits_{1}^{2}{\left[ \left( 2x{{e}^{{{x}^{2}}}} \right)x \right]}dx \\
& \Rightarrow a=\left[ 2{{e}^{4}}-e \right]-\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
& \Rightarrow a=\left[ 2{{e}^{4}}-e \right]-\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
& \Rightarrow \int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx}=2{{e}^{4}}-e-a \\
\end{align}\]
Now, from the above equation, we will find that \[\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx}=I\] . Then, we conclude that:
\[\begin{align}
& \int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx}=2{{e}^{4}}-e-a \\
& \Rightarrow I=2{{e}^{4}}-e-a \\
\end{align}\]
Now, as per our assumption $I=\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ . Then,
$\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}=2{{e}^{4}}-e-a$
Thus, the value of $\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ is $2{{e}^{4}}-e-a$ .
Hence, option (d) is the correct option.
Note: Here, the student should do the correct substitution and for any such problem we should proceed stepwise while solving without doing any calculation mistake. Similarly, before exactly solving the integral first we should analyse what we have to evaluate and how to start the solution, so that we can get the value of the given integral. Then, select the correct option without any error.
Complete step-by-step solution -
Given:
It is given that, $\int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx=a}$ and we have to find the value of $\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ .
Now, let $I=\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ and $t=\sqrt{{{\log }_{e}}x}$ . Then,
$\begin{align}
& t=\sqrt{{{\log }_{e}}x} \\
& {{t}^{2}}={{\log }_{e}}x \\
& {{e}^{{{t}^{2}}}}=x \\
& 2t{{e}^{{{t}^{2}}}}dt=dx \\
\end{align}$
And, when $x=e$ then $t=1$ and when $x={{e}^{4}}$ then $t=2$ . Then,
\[\begin{align}
& I=\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}=\int\limits_{1}^{2}{2{{t}^{2}}{{e}^{{{t}^{2}}}}dt} \\
& \Rightarrow I=\int\limits_{1}^{2}{2{{t}^{2}}{{e}^{{{t}^{2}}}}dt} \\
\end{align}\]
Now, in the above expression of $I$ as $t$ is just a variable so we can write, \[\begin{align}
& I=\int\limits_{1}^{2}{2{{t}^{2}}{{e}^{{{t}^{2}}}}dt}=\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
& \Rightarrow I=\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
\end{align}\]
Now, before we proceed to solve the above integral we should know the formula of integration by parts which are written below:
$\int\limits_{l}^{u}{f\left( x \right)}\cdot g\left( x \right)dx=\left[ f\left( x \right)\int{g\left( x \right)}dx \right]_{l}^{u}-\int\limits_{l}^{u}{\left[ \left( \dfrac{d\left( f\left( x \right) \right)}{dx} \right)\cdot \left( \int{g\left( x \right)dx} \right) \right]dx}$
Now, we will use the above formula directly to evaluate the value of integral \[\int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx}\] . Where $f\left( x \right)={{e}^{{{x}^{2}}}}$ , $g\left( x \right)=1$ , $l=1$ and $u=2$ . Then,
\[\begin{align}
& \int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx}=a=\left[ {{e}^{{{x}^{2}}}}\int{dx} \right]_{1}^{2}-\int\limits_{1}^{2}{\left[ \left( \dfrac{d\left( {{e}^{{{x}^{2}}}} \right)}{dx} \right)\left( \int{dx} \right) \right]dx} \\
& \Rightarrow a=\left[ {{e}^{{{x}^{2}}}}\cdot x \right]_{1}^{2}-\int\limits_{1}^{2}{\left[ \left( 2x{{e}^{{{x}^{2}}}} \right)x \right]}dx \\
& \Rightarrow a=\left[ 2{{e}^{4}}-e \right]-\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
& \Rightarrow a=\left[ 2{{e}^{4}}-e \right]-\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx} \\
& \Rightarrow \int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx}=2{{e}^{4}}-e-a \\
\end{align}\]
Now, from the above equation, we will find that \[\int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx}=I\] . Then, we conclude that:
\[\begin{align}
& \int\limits_{1}^{2}{2{{x}^{2}}{{e}^{{{x}^{2}}}}dx}=2{{e}^{4}}-e-a \\
& \Rightarrow I=2{{e}^{4}}-e-a \\
\end{align}\]
Now, as per our assumption $I=\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ . Then,
$\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}=2{{e}^{4}}-e-a$
Thus, the value of $\int\limits_{e}^{{{e}^{4}}}{\sqrt{{{\log }_{e}}x}dx}$ is $2{{e}^{4}}-e-a$ .
Hence, option (d) is the correct option.
Note: Here, the student should do the correct substitution and for any such problem we should proceed stepwise while solving without doing any calculation mistake. Similarly, before exactly solving the integral first we should analyse what we have to evaluate and how to start the solution, so that we can get the value of the given integral. Then, select the correct option without any error.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

