
General solution of \[\tan \theta + \tan 4\theta + \tan 7\theta = \tan \theta \tan 4\theta \tan 7\theta \] is
a. \[\theta = n\dfrac{\pi }{{12}}\] where, \[n \in \mathbb{Z}\]
b. \[\theta = n\dfrac{\pi }{9}\] where, \[n \in \mathbb{Z}\]
c. \[\theta = n\pi + \dfrac{\pi }{{12}}\] where, \[n \in \mathbb{Z}\]
d. none of these
Answer
588.6k+ views
Hint: To deal with this problem we will use the help of the general formula of
\[\;\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = \tan \left( {A + B} \right)\]. We will then use the case of \[x = y + n\pi \] for, \[\tan x = \tan y\]. Then analyzing the options, we will get the needed answer.
Complete step-by-step answer:
We have,
\[tan\theta + tan4\theta + tan7\theta = tan\theta tan4\theta tan7\theta \]
Changing sides, we get,
\[ \Rightarrow tan\theta + tan4\theta = tan\theta tan4\theta tan7\theta - \tan 7\theta \]
Taking \[ - tan7\theta \] common we get,
\[ \Rightarrow tan\theta + tan4\theta = - tan7\theta \left( {1 - tan\theta tan4\theta } \right)\]
Dividing both sides with, \[1 - tan\theta tan4\theta \] we get,
\[ \Rightarrow \dfrac{{tan\theta + tan4\theta }}{{1 - tan\theta tan4\theta }} = - tan7\theta \]
Since, \[\;\dfrac{{tanA + tanB}}{{1 - tanAtanB}} = tan\left( {A + B} \right)\]
\[ \Rightarrow tan\left( {\theta + 4\theta } \right) = - tan7\theta \;\;\]
On Adding terms in bracket, we get,
\[ \Rightarrow tan5\theta = tan\left( { - 7\theta } \right)\;\]
As, \[x = y + n\pi \] for, \[\tan x = \tan y\], we get,
\[ \Rightarrow 5\theta = \left( { - 7\theta } \right)\; + n\pi \]
On simplification we get,
\[ \Rightarrow 12\theta = n\pi \]
\[\therefore \theta = \dfrac{{n\pi }}{{12}},\;{\text{ }}\;{\text{ }}\;\forall \;n \in \mathbb{Z}\;\]
Hence, option (a) is correct.
Note: We have,
\[tan{\text{ }}\theta {\text{ }} = {\text{ }}tan \propto \]
Using \[\tan \theta = \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}\] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}{\text{ }} - {\text{ }}\dfrac{{sin \propto }}{{cos \propto }} = {\text{ }}0\]
On taking LCM we get,
\[ \Rightarrow \dfrac{{(sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
Using \[sin{\text{ }}(\theta {\text{ }} - \propto ) = sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto \] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}(\theta {\text{ }} - \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
On simplification we get,
\[ \Rightarrow sin{\text{ }}(\theta {\text{ }} - \propto ){\text{ }} = {\text{ }}0\]
\[ \Rightarrow {\text{ }}\left( {\theta {\text{ }} - {\text{ }} \propto } \right){\text{ }} = {\text{ }}n\pi ,\]where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\] [Since we know that the \[\theta {\text{ }} = {\text{ }}n\pi ,{\text{ }}n \in Z\] is the general solution of the given equation \[sin{\text{ }}\theta {\text{ }} = {\text{ }}0\]]
\[ \Rightarrow \theta {\text{ }} = {\text{ }}n\pi {\text{ }} + \propto ,\] where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\]
\[\;\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = \tan \left( {A + B} \right)\]. We will then use the case of \[x = y + n\pi \] for, \[\tan x = \tan y\]. Then analyzing the options, we will get the needed answer.
Complete step-by-step answer:
We have,
\[tan\theta + tan4\theta + tan7\theta = tan\theta tan4\theta tan7\theta \]
Changing sides, we get,
\[ \Rightarrow tan\theta + tan4\theta = tan\theta tan4\theta tan7\theta - \tan 7\theta \]
Taking \[ - tan7\theta \] common we get,
\[ \Rightarrow tan\theta + tan4\theta = - tan7\theta \left( {1 - tan\theta tan4\theta } \right)\]
Dividing both sides with, \[1 - tan\theta tan4\theta \] we get,
\[ \Rightarrow \dfrac{{tan\theta + tan4\theta }}{{1 - tan\theta tan4\theta }} = - tan7\theta \]
Since, \[\;\dfrac{{tanA + tanB}}{{1 - tanAtanB}} = tan\left( {A + B} \right)\]
\[ \Rightarrow tan\left( {\theta + 4\theta } \right) = - tan7\theta \;\;\]
On Adding terms in bracket, we get,
\[ \Rightarrow tan5\theta = tan\left( { - 7\theta } \right)\;\]
As, \[x = y + n\pi \] for, \[\tan x = \tan y\], we get,
\[ \Rightarrow 5\theta = \left( { - 7\theta } \right)\; + n\pi \]
On simplification we get,
\[ \Rightarrow 12\theta = n\pi \]
\[\therefore \theta = \dfrac{{n\pi }}{{12}},\;{\text{ }}\;{\text{ }}\;\forall \;n \in \mathbb{Z}\;\]
Hence, option (a) is correct.
Note: We have,
\[tan{\text{ }}\theta {\text{ }} = {\text{ }}tan \propto \]
Using \[\tan \theta = \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}\] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}{\text{ }} - {\text{ }}\dfrac{{sin \propto }}{{cos \propto }} = {\text{ }}0\]
On taking LCM we get,
\[ \Rightarrow \dfrac{{(sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
Using \[sin{\text{ }}(\theta {\text{ }} - \propto ) = sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto \] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}(\theta {\text{ }} - \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
On simplification we get,
\[ \Rightarrow sin{\text{ }}(\theta {\text{ }} - \propto ){\text{ }} = {\text{ }}0\]
\[ \Rightarrow {\text{ }}\left( {\theta {\text{ }} - {\text{ }} \propto } \right){\text{ }} = {\text{ }}n\pi ,\]where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\] [Since we know that the \[\theta {\text{ }} = {\text{ }}n\pi ,{\text{ }}n \in Z\] is the general solution of the given equation \[sin{\text{ }}\theta {\text{ }} = {\text{ }}0\]]
\[ \Rightarrow \theta {\text{ }} = {\text{ }}n\pi {\text{ }} + \propto ,\] where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

