
General solution of \[\tan \theta + \tan 4\theta + \tan 7\theta = \tan \theta \tan 4\theta \tan 7\theta \] is
a. \[\theta = n\dfrac{\pi }{{12}}\] where, \[n \in \mathbb{Z}\]
b. \[\theta = n\dfrac{\pi }{9}\] where, \[n \in \mathbb{Z}\]
c. \[\theta = n\pi + \dfrac{\pi }{{12}}\] where, \[n \in \mathbb{Z}\]
d. none of these
Answer
576.6k+ views
Hint: To deal with this problem we will use the help of the general formula of
\[\;\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = \tan \left( {A + B} \right)\]. We will then use the case of \[x = y + n\pi \] for, \[\tan x = \tan y\]. Then analyzing the options, we will get the needed answer.
Complete step-by-step answer:
We have,
\[tan\theta + tan4\theta + tan7\theta = tan\theta tan4\theta tan7\theta \]
Changing sides, we get,
\[ \Rightarrow tan\theta + tan4\theta = tan\theta tan4\theta tan7\theta - \tan 7\theta \]
Taking \[ - tan7\theta \] common we get,
\[ \Rightarrow tan\theta + tan4\theta = - tan7\theta \left( {1 - tan\theta tan4\theta } \right)\]
Dividing both sides with, \[1 - tan\theta tan4\theta \] we get,
\[ \Rightarrow \dfrac{{tan\theta + tan4\theta }}{{1 - tan\theta tan4\theta }} = - tan7\theta \]
Since, \[\;\dfrac{{tanA + tanB}}{{1 - tanAtanB}} = tan\left( {A + B} \right)\]
\[ \Rightarrow tan\left( {\theta + 4\theta } \right) = - tan7\theta \;\;\]
On Adding terms in bracket, we get,
\[ \Rightarrow tan5\theta = tan\left( { - 7\theta } \right)\;\]
As, \[x = y + n\pi \] for, \[\tan x = \tan y\], we get,
\[ \Rightarrow 5\theta = \left( { - 7\theta } \right)\; + n\pi \]
On simplification we get,
\[ \Rightarrow 12\theta = n\pi \]
\[\therefore \theta = \dfrac{{n\pi }}{{12}},\;{\text{ }}\;{\text{ }}\;\forall \;n \in \mathbb{Z}\;\]
Hence, option (a) is correct.
Note: We have,
\[tan{\text{ }}\theta {\text{ }} = {\text{ }}tan \propto \]
Using \[\tan \theta = \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}\] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}{\text{ }} - {\text{ }}\dfrac{{sin \propto }}{{cos \propto }} = {\text{ }}0\]
On taking LCM we get,
\[ \Rightarrow \dfrac{{(sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
Using \[sin{\text{ }}(\theta {\text{ }} - \propto ) = sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto \] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}(\theta {\text{ }} - \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
On simplification we get,
\[ \Rightarrow sin{\text{ }}(\theta {\text{ }} - \propto ){\text{ }} = {\text{ }}0\]
\[ \Rightarrow {\text{ }}\left( {\theta {\text{ }} - {\text{ }} \propto } \right){\text{ }} = {\text{ }}n\pi ,\]where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\] [Since we know that the \[\theta {\text{ }} = {\text{ }}n\pi ,{\text{ }}n \in Z\] is the general solution of the given equation \[sin{\text{ }}\theta {\text{ }} = {\text{ }}0\]]
\[ \Rightarrow \theta {\text{ }} = {\text{ }}n\pi {\text{ }} + \propto ,\] where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\]
\[\;\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = \tan \left( {A + B} \right)\]. We will then use the case of \[x = y + n\pi \] for, \[\tan x = \tan y\]. Then analyzing the options, we will get the needed answer.
Complete step-by-step answer:
We have,
\[tan\theta + tan4\theta + tan7\theta = tan\theta tan4\theta tan7\theta \]
Changing sides, we get,
\[ \Rightarrow tan\theta + tan4\theta = tan\theta tan4\theta tan7\theta - \tan 7\theta \]
Taking \[ - tan7\theta \] common we get,
\[ \Rightarrow tan\theta + tan4\theta = - tan7\theta \left( {1 - tan\theta tan4\theta } \right)\]
Dividing both sides with, \[1 - tan\theta tan4\theta \] we get,
\[ \Rightarrow \dfrac{{tan\theta + tan4\theta }}{{1 - tan\theta tan4\theta }} = - tan7\theta \]
Since, \[\;\dfrac{{tanA + tanB}}{{1 - tanAtanB}} = tan\left( {A + B} \right)\]
\[ \Rightarrow tan\left( {\theta + 4\theta } \right) = - tan7\theta \;\;\]
On Adding terms in bracket, we get,
\[ \Rightarrow tan5\theta = tan\left( { - 7\theta } \right)\;\]
As, \[x = y + n\pi \] for, \[\tan x = \tan y\], we get,
\[ \Rightarrow 5\theta = \left( { - 7\theta } \right)\; + n\pi \]
On simplification we get,
\[ \Rightarrow 12\theta = n\pi \]
\[\therefore \theta = \dfrac{{n\pi }}{{12}},\;{\text{ }}\;{\text{ }}\;\forall \;n \in \mathbb{Z}\;\]
Hence, option (a) is correct.
Note: We have,
\[tan{\text{ }}\theta {\text{ }} = {\text{ }}tan \propto \]
Using \[\tan \theta = \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}\] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}\theta }}{{\cos \theta }}{\text{ }} - {\text{ }}\dfrac{{sin \propto }}{{cos \propto }} = {\text{ }}0\]
On taking LCM we get,
\[ \Rightarrow \dfrac{{(sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
Using \[sin{\text{ }}(\theta {\text{ }} - \propto ) = sin{\text{ }}\theta {\text{ }}cos \propto - {\text{ }}cos{\text{ }}\theta {\text{ }}sin \propto \] , we get,
\[ \Rightarrow \dfrac{{sin{\text{ }}(\theta {\text{ }} - \propto )}}{{cos{\text{ }}\theta {\text{ }}cos \propto }} = {\text{ }}0\]
On simplification we get,
\[ \Rightarrow sin{\text{ }}(\theta {\text{ }} - \propto ){\text{ }} = {\text{ }}0\]
\[ \Rightarrow {\text{ }}\left( {\theta {\text{ }} - {\text{ }} \propto } \right){\text{ }} = {\text{ }}n\pi ,\]where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\] [Since we know that the \[\theta {\text{ }} = {\text{ }}n\pi ,{\text{ }}n \in Z\] is the general solution of the given equation \[sin{\text{ }}\theta {\text{ }} = {\text{ }}0\]]
\[ \Rightarrow \theta {\text{ }} = {\text{ }}n\pi {\text{ }} + \propto ,\] where \[n \in Z{\text{ }}\left( {i.e.,{\text{ }}n{\text{ }} = {\text{ }}0,{\text{ }} \pm {\text{ }}1,{\text{ }} \pm {\text{ }}2,{\text{ }} \pm {\text{ }}3, \ldots \ldots .} \right),\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

