
From the following molar conductivities at infinite dilution,
$\Lambda _{{\text{m }}}^{\text{o}}{\text{for A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ = }}858{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
$\Lambda _{{\text{m }}}^{\text{o}}{\text{for N}}{{\text{H}}_4}{\text{OH = }}238.3{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
$\Lambda _{{\text{m }}}^{\text{o}}{\text{for (N}}{{\text{H}}_{\text{4}}}{{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}{\text{ = }}238.4{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
calculate $\Lambda _{{\text{m }}}^{\text{o}}{\text{for Al(OH}}{{\text{)}}_{\text{3}}}$.
A.$715.2{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
B.$1575.6{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
C.$786.3{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
D.$157.56{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
Answer
565.2k+ views
Hint:To solve this question, it is required to have knowledge about the Kohlraush law. It states that at infinite dilution, the equivalent conductivity of an electrolyte is equal to the sum of the conductance of the cations and anions (formula given). We shall use this law and write the conductivity of the given compounds as the sum of their ions. Then we shall substitute the values possible to calculate the $\Lambda _{{\text{m }}}^{\text{o}}{\text{for Al(OH}}{{\text{)}}_{\text{3}}}$ .
Formula used: \[\Lambda _{\text{m}}^{\text{o}}{\text{ = }}{{\text{z}}_{\text{ + }}}\Lambda _{\text{ + }}^{\text{o}}{\text{ + }}{{\text{z}}_{\text{ - }}}\Lambda _{\text{ - }}^{\text{o}}\] where $\Lambda _m^o$ is the conductivity of the electrolyte, $\Lambda _ + ^o$ is the conductivity of the cation, $\Lambda _ - ^o$ is the conductivity of the anion, ${{\text{z}}_{\text{ + }}}$ is the stoichiometric coefficient of the cation and ${{\text{z}}_{\text{ - }}}$ is the stoichiometric coefficient of the anion.
Complete step by step answer:
The Kohlraush law can be used to determine the limiting molar conductivities for an electrolyte. Weak electrolytes have lower molar conductivities and lower degree of dissociation at higher concentration and increase steeply on dilution. Here, Kohlraush law is used to calculate the molar conductivity of such electrolytes.
${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$ in a solution dissociates into:
${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}} \to {\text{2A}}{{\text{l}}^{{\text{3 + }}}}{\text{ + 3SO}}_{\text{4}}^{{\text{2 - }}}$
So, applying Kohlraush law we get:
$\Lambda _{{\text{A}}{{\text{l}}_{\text{2}}}{{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}}_{\text{3}}}{\text{ }}}^{\text{o}}{\text{ = }}2\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}{\text{ }}}^{\text{o}}{\text{ + }}3\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}}$ (Eq. 1)
${\text{N}}{{\text{H}}_{\text{4}}}{\text{OH}}$ in a solution dissociates into:
${\text{N}}{{\text{H}}_{\text{4}}}{\text{OH}} \to {\text{NH}}_{\text{4}}^{\text{ + }}{\text{ + O}}{{\text{H}}^{\text{ - }}}$
So, applying Kohlraush law we get:
$\Lambda _{{\text{ N}}{{\text{H}}_{\text{4}}}{\text{OH }}}^{\text{o}}{\text{ = }}\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}}{\text{ + }}\Lambda _{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}}$ (Eq. 2)
${{\text{(N}}{{\text{H}}_{\text{4}}}{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}$ in a solution dissociates into:
${{\text{(N}}{{\text{H}}_{\text{4}}}{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} \to {\text{2NH}}_{\text{4}}^{\text{ + }}{\text{ + SO}}_{\text{4}}^{{\text{2 - }}}$
So, applying the Kohlraush law we get:
$\Lambda _{{\text{ (N}}{{\text{H}}_{\text{4}}}{{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}{\text{ }}}^{\text{o}}{\text{ = }}2\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}}{\text{ + }}\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}}$ (Eq. 3)
${\text{Al(OH}}{{\text{)}}_{\text{3}}}$ in a solution will dissociate into:
${\text{Al(OH}}{{\text{)}}_{\text{3}}} \to {\text{A}}{{\text{l}}^{{\text{3 + }}}}{\text{ + 3O}}{{\text{H}}^{\text{ - }}}$
So, applying Kohlraush law we get:
$\Lambda _{{\text{ Al(OH}}{{\text{)}}_{\text{3}}}{\text{ }}}^{\text{o}}{\text{ = }}\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}}^{\text{o}}{\text{ + }}3\Lambda _{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}}$ (Eq. 4)
Now, by adding Eq. 1 and six times Eq. 2 and subtracting it from three times Eq. 3, we get:
$2\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}{\text{ }}}^{\text{o}}{\text{ + }}3\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}}{\text{ + }}6\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}}{\text{ + 6\Lambda }}_{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}} - {\text{ }}6\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}} - {\text{ }}3\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}} = 2\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}}^{\text{o}}{\text{ + }}6\Lambda _{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}}$
$ \Rightarrow \Lambda _{{\text{A}}{{\text{l}}_{\text{2}}}{{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}}_{\text{3}}}{\text{ }}}^{\text{o}}{\text{ + }}6\Lambda _{{\text{ N}}{{\text{H}}_{\text{4}}}{\text{OH }}}^{\text{o}} - {\text{ }}3\Lambda _{{\text{ (N}}{{\text{H}}_{\text{4}}}{{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}{\text{ }}}^{\text{o}}{\text{ = }}2\Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}$
So, by substituting the values in the above equation we get:
$2\Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}{\text{ = }}858{\text{ }} + {\text{ }}6(238.3){\text{ }} - {\text{ }}3(288.4)$
Solving this, we get:
$2\Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}{\text{ = }}1572.6$
$ \Rightarrow \Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}{\text{ = }}786.3{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
$\therefore $ The correct option is option C, i.e. $786.3{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$ .
Note:
Kohlraush law is used like algebraic equations, we add, multiply, subtract to get the molar conductivity of the ions required. It can be solved easily if we consider the ions as variables and solve them similar to algebraic equations.
Formula used: \[\Lambda _{\text{m}}^{\text{o}}{\text{ = }}{{\text{z}}_{\text{ + }}}\Lambda _{\text{ + }}^{\text{o}}{\text{ + }}{{\text{z}}_{\text{ - }}}\Lambda _{\text{ - }}^{\text{o}}\] where $\Lambda _m^o$ is the conductivity of the electrolyte, $\Lambda _ + ^o$ is the conductivity of the cation, $\Lambda _ - ^o$ is the conductivity of the anion, ${{\text{z}}_{\text{ + }}}$ is the stoichiometric coefficient of the cation and ${{\text{z}}_{\text{ - }}}$ is the stoichiometric coefficient of the anion.
Complete step by step answer:
The Kohlraush law can be used to determine the limiting molar conductivities for an electrolyte. Weak electrolytes have lower molar conductivities and lower degree of dissociation at higher concentration and increase steeply on dilution. Here, Kohlraush law is used to calculate the molar conductivity of such electrolytes.
${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$ in a solution dissociates into:
${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}} \to {\text{2A}}{{\text{l}}^{{\text{3 + }}}}{\text{ + 3SO}}_{\text{4}}^{{\text{2 - }}}$
So, applying Kohlraush law we get:
$\Lambda _{{\text{A}}{{\text{l}}_{\text{2}}}{{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}}_{\text{3}}}{\text{ }}}^{\text{o}}{\text{ = }}2\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}{\text{ }}}^{\text{o}}{\text{ + }}3\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}}$ (Eq. 1)
${\text{N}}{{\text{H}}_{\text{4}}}{\text{OH}}$ in a solution dissociates into:
${\text{N}}{{\text{H}}_{\text{4}}}{\text{OH}} \to {\text{NH}}_{\text{4}}^{\text{ + }}{\text{ + O}}{{\text{H}}^{\text{ - }}}$
So, applying Kohlraush law we get:
$\Lambda _{{\text{ N}}{{\text{H}}_{\text{4}}}{\text{OH }}}^{\text{o}}{\text{ = }}\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}}{\text{ + }}\Lambda _{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}}$ (Eq. 2)
${{\text{(N}}{{\text{H}}_{\text{4}}}{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}$ in a solution dissociates into:
${{\text{(N}}{{\text{H}}_{\text{4}}}{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} \to {\text{2NH}}_{\text{4}}^{\text{ + }}{\text{ + SO}}_{\text{4}}^{{\text{2 - }}}$
So, applying the Kohlraush law we get:
$\Lambda _{{\text{ (N}}{{\text{H}}_{\text{4}}}{{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}{\text{ }}}^{\text{o}}{\text{ = }}2\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}}{\text{ + }}\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}}$ (Eq. 3)
${\text{Al(OH}}{{\text{)}}_{\text{3}}}$ in a solution will dissociate into:
${\text{Al(OH}}{{\text{)}}_{\text{3}}} \to {\text{A}}{{\text{l}}^{{\text{3 + }}}}{\text{ + 3O}}{{\text{H}}^{\text{ - }}}$
So, applying Kohlraush law we get:
$\Lambda _{{\text{ Al(OH}}{{\text{)}}_{\text{3}}}{\text{ }}}^{\text{o}}{\text{ = }}\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}}^{\text{o}}{\text{ + }}3\Lambda _{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}}$ (Eq. 4)
Now, by adding Eq. 1 and six times Eq. 2 and subtracting it from three times Eq. 3, we get:
$2\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}{\text{ }}}^{\text{o}}{\text{ + }}3\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}}{\text{ + }}6\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}}{\text{ + 6\Lambda }}_{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}} - {\text{ }}6\Lambda _{{\text{NH}}_{\text{4}}^{\text{ + }}{\text{ }}}^{\text{o}} - {\text{ }}3\Lambda _{{\text{SO}}_{\text{4}}^{{\text{2 - }}}{\text{ }}}^{\text{o}} = 2\Lambda _{{\text{A}}{{\text{l}}^{{\text{3 + }}}}}^{\text{o}}{\text{ + }}6\Lambda _{{\text{O}}{{\text{H}}^{\text{ - }}}{\text{ }}}^{\text{o}}$
$ \Rightarrow \Lambda _{{\text{A}}{{\text{l}}_{\text{2}}}{{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}}_{\text{3}}}{\text{ }}}^{\text{o}}{\text{ + }}6\Lambda _{{\text{ N}}{{\text{H}}_{\text{4}}}{\text{OH }}}^{\text{o}} - {\text{ }}3\Lambda _{{\text{ (N}}{{\text{H}}_{\text{4}}}{{\text{)}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}{\text{ }}}^{\text{o}}{\text{ = }}2\Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}$
So, by substituting the values in the above equation we get:
$2\Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}{\text{ = }}858{\text{ }} + {\text{ }}6(238.3){\text{ }} - {\text{ }}3(288.4)$
Solving this, we get:
$2\Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}{\text{ = }}1572.6$
$ \Rightarrow \Lambda _{{\text{Al(OH}}{{\text{)}}_{\text{3}}}}^{\text{o}}{\text{ = }}786.3{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$
$\therefore $ The correct option is option C, i.e. $786.3{\text{ S c}}{{\text{m}}^{\text{2}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}}$ .
Note:
Kohlraush law is used like algebraic equations, we add, multiply, subtract to get the molar conductivity of the ions required. It can be solved easily if we consider the ions as variables and solve them similar to algebraic equations.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

