Answer
Verified
409.2k+ views
Hint: To draw a parallel from a line segment to a point outside the line segment, firstly draw a line segment AB=6cm, then mark a point P outside of the line segment. Join the point P to the line segment. Measure the angle which the line from the point P makes with the line segment \[AB\] by making an arc and retrace the angle at the point P. Now, measure the length of the arc that intersects the line from the point P and the line segment \[AB\] and make a second arc on the retraced angle at the point P. Join the point P with the intersection of the arcs. We get a line parallel to the line segment \[AB\].
Complete step-by-step solution:
Parallel lines are a set of lines which never intersect no matter how far the lines are stretched. These can be compared to the train tracks that always run parallel to each other but never intersect. These lines have certain properties which will help us in the construction of these parallel lines. We will see those properties as we proceed.
According to the question, we have to construct a parallel line from a line with a given length (line segment) to a point which is outside of that line segment. We will do step wise construction:
Step 1: Draw a line AB=6cm and label it as well.
Step 2: Now, mark a point P, anywhere outside the line segment \[AB\]
Step 3: Join the point P to a point (let’s say C) on the line segment \[AB\], we have
We know that parallel lines have congruent corresponding angles, we will use this property of the parallel lines to construct the parallel lines.
Step 4: Taking point C as the centre makes an arc intersecting the line \[PC\] and the line segment \[AB\].
Step 5: Similarly, draw an arc taking P as the centre, we have,
Step 6: Now the length of the arc intersecting the line segment \[AB\] and the line \[PC\], that measure the arc \[DE\] and make a second arc taking the point F as the centre, and then join the intersection of the arcs with the point P. We get
Therefore, we obtain \[PQ\] parallel to the line segment \[AB\].
To check whether the lines we obtained are parallel or not, we will use the property that in parallel lines the corresponding angles are equal. That is, we have to check if
$\angle DCB = \angle FPQ$
or not. Measuring these angles, we get the values of these angles as:
$\angle DCB =71.5{6}^{\circ}$
$\angle FPQ =71.5{6}^{\circ}$
So, we see that both these angles are equal, therefore, we obtained parallel lines.
Note: Measuring of the arcs should be done neatly, as the entire construction of the parallel lines is depended on this step. After the construction of the parallel lines, never assume that they are definitely parallel, always check if the corresponding angles are congruent (or same) or not, only then your question is completed.
Complete step-by-step solution:
Parallel lines are a set of lines which never intersect no matter how far the lines are stretched. These can be compared to the train tracks that always run parallel to each other but never intersect. These lines have certain properties which will help us in the construction of these parallel lines. We will see those properties as we proceed.
According to the question, we have to construct a parallel line from a line with a given length (line segment) to a point which is outside of that line segment. We will do step wise construction:
Step 1: Draw a line AB=6cm and label it as well.
Step 2: Now, mark a point P, anywhere outside the line segment \[AB\]
Step 3: Join the point P to a point (let’s say C) on the line segment \[AB\], we have
We know that parallel lines have congruent corresponding angles, we will use this property of the parallel lines to construct the parallel lines.
Step 4: Taking point C as the centre makes an arc intersecting the line \[PC\] and the line segment \[AB\].
Step 5: Similarly, draw an arc taking P as the centre, we have,
Step 6: Now the length of the arc intersecting the line segment \[AB\] and the line \[PC\], that measure the arc \[DE\] and make a second arc taking the point F as the centre, and then join the intersection of the arcs with the point P. We get
Therefore, we obtain \[PQ\] parallel to the line segment \[AB\].
To check whether the lines we obtained are parallel or not, we will use the property that in parallel lines the corresponding angles are equal. That is, we have to check if
$\angle DCB = \angle FPQ$
or not. Measuring these angles, we get the values of these angles as:
$\angle DCB =71.5{6}^{\circ}$
$\angle FPQ =71.5{6}^{\circ}$
So, we see that both these angles are equal, therefore, we obtained parallel lines.
Note: Measuring of the arcs should be done neatly, as the entire construction of the parallel lines is depended on this step. After the construction of the parallel lines, never assume that they are definitely parallel, always check if the corresponding angles are congruent (or same) or not, only then your question is completed.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell