
For $ {x^2} - 4 \ne 0 $ , the value of $ \dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] $ at $ x = 3 $ is:
A. $ 1 $
B. $ \dfrac{8}{5} $
C. $ 2 $
D. $ \dfrac{{8{e^3}}}{5} $
Answer
566.7k+ views
Hint: First simplify the given function with the help of the properties of logarithm and then differentiate it with respect to the independent variable $ x $ . Substitute the value of x=3 in the final obtain equation after differentiating to get the required value.
Complete step-by-step answer:
Simplify the function given in the question with the help of properties of logarithm:
$
\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\} = \log \left( {{e^x}} \right) + \log \left\{ {{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\} \\
= x\log e + \dfrac{3}{4}\log \left( {\dfrac{{x - 2}}{{x + 2}}} \right) \\
= x\left( 1 \right) + \dfrac{3}{4}\left( {\log \left( {x - 2} \right) - \log \left( {x + 2} \right)} \right) \\
= x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right) \;
$
Now differentiate the expression with respect to the independent variable $ x $ .
$
\dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] = \dfrac{d}{{dx}}\left( {x + \dfrac{3}{4}\log \left( {x - 2} \right) + \dfrac{3}{4}\log \left( {x + 2} \right)} \right) \\
= \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\dfrac{3}{4}\log \left( {x - 2} \right)} \right) - \dfrac{d}{{dx}}\left( {\dfrac{3}{4}\log \left( {x + 2} \right)} \right) \\
= 1 + \dfrac{3}{4} \times \dfrac{1}{{x - 2}} \times \dfrac{d}{{dx}}\left( {x - 2} \right) - \dfrac{3}{4} \times \dfrac{1}{{x + 2}} \times \dfrac{d}{{dx}}\left( {x + 2} \right) \\
= 1 + \dfrac{3}{{4\left( {x - 2} \right)}} \times 1 - \dfrac{3}{{4\left( {x + 2} \right)}} \times 1 \\
= 1 + \dfrac{3}{{4\left( {x - 2} \right)}} - \dfrac{3}{{4\left( {x + 2} \right)}} \;
$
Further simplify,
$
\dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] = 1 + \dfrac{3}{{4\left( {x - 2} \right)}} - \dfrac{3}{{4\left( {x + 2} \right)}} \\
= \dfrac{{4\left( {x - 2} \right)\left( {x + 2} \right) + 3\left( {x + 2} \right) - 3\left( {x - 2} \right)}}{{4\left( {x - 2} \right)\left( {x + 2} \right)}} \\
= \dfrac{{4\left( {{x^2} - 4} \right) + 3x + 6 - 3x + 6}}{{4\left( {{x^2} - 4} \right)}} \\
= \dfrac{{4{x^2} + 12 - 16}}{{4\left( {{x^2} - 4} \right)}} \\
= \dfrac{{{x^2} - 1}}{{{x^2} - 4}} \;
$
Now substitute $ 3 $ for $ x $ in the expression to get the value of $ \dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] $ at $ x = 3 $ .
$
\dfrac{d}{{dx}}{\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right]_{x = 3}} = \dfrac{{{{\left( 3 \right)}^2} - 1}}{{{{\left( 3 \right)}^2} - 4}} \\
= \dfrac{{9 - 1}}{{9 - 4}} \\
= \dfrac{8}{5} \;
$
So, the correct answer is “Option B”.
Note: Simplify the function first and then solve otherwise it will be a complicated problem to solve. The logarithm properties used in this question are as follows:
$
\log \left( {ab} \right) = \log a + \log b \\
\log \left( {\dfrac{a}{b}} \right) = \log a - \log b \\
\log {a^b} = b\log a \;
$
The differentiation of a function $ g\left( x \right) $ which is equal to $ \log \left( {f\left( x \right)} \right) $ is given by $ \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) $ which is equal to $ \dfrac{1}{{f\left( x \right)}} \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) $ .
Complete step-by-step answer:
Simplify the function given in the question with the help of properties of logarithm:
$
\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\} = \log \left( {{e^x}} \right) + \log \left\{ {{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\} \\
= x\log e + \dfrac{3}{4}\log \left( {\dfrac{{x - 2}}{{x + 2}}} \right) \\
= x\left( 1 \right) + \dfrac{3}{4}\left( {\log \left( {x - 2} \right) - \log \left( {x + 2} \right)} \right) \\
= x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right) \;
$
Now differentiate the expression with respect to the independent variable $ x $ .
$
\dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] = \dfrac{d}{{dx}}\left( {x + \dfrac{3}{4}\log \left( {x - 2} \right) + \dfrac{3}{4}\log \left( {x + 2} \right)} \right) \\
= \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\dfrac{3}{4}\log \left( {x - 2} \right)} \right) - \dfrac{d}{{dx}}\left( {\dfrac{3}{4}\log \left( {x + 2} \right)} \right) \\
= 1 + \dfrac{3}{4} \times \dfrac{1}{{x - 2}} \times \dfrac{d}{{dx}}\left( {x - 2} \right) - \dfrac{3}{4} \times \dfrac{1}{{x + 2}} \times \dfrac{d}{{dx}}\left( {x + 2} \right) \\
= 1 + \dfrac{3}{{4\left( {x - 2} \right)}} \times 1 - \dfrac{3}{{4\left( {x + 2} \right)}} \times 1 \\
= 1 + \dfrac{3}{{4\left( {x - 2} \right)}} - \dfrac{3}{{4\left( {x + 2} \right)}} \;
$
Further simplify,
$
\dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] = 1 + \dfrac{3}{{4\left( {x - 2} \right)}} - \dfrac{3}{{4\left( {x + 2} \right)}} \\
= \dfrac{{4\left( {x - 2} \right)\left( {x + 2} \right) + 3\left( {x + 2} \right) - 3\left( {x - 2} \right)}}{{4\left( {x - 2} \right)\left( {x + 2} \right)}} \\
= \dfrac{{4\left( {{x^2} - 4} \right) + 3x + 6 - 3x + 6}}{{4\left( {{x^2} - 4} \right)}} \\
= \dfrac{{4{x^2} + 12 - 16}}{{4\left( {{x^2} - 4} \right)}} \\
= \dfrac{{{x^2} - 1}}{{{x^2} - 4}} \;
$
Now substitute $ 3 $ for $ x $ in the expression to get the value of $ \dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] $ at $ x = 3 $ .
$
\dfrac{d}{{dx}}{\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right]_{x = 3}} = \dfrac{{{{\left( 3 \right)}^2} - 1}}{{{{\left( 3 \right)}^2} - 4}} \\
= \dfrac{{9 - 1}}{{9 - 4}} \\
= \dfrac{8}{5} \;
$
So, the correct answer is “Option B”.
Note: Simplify the function first and then solve otherwise it will be a complicated problem to solve. The logarithm properties used in this question are as follows:
$
\log \left( {ab} \right) = \log a + \log b \\
\log \left( {\dfrac{a}{b}} \right) = \log a - \log b \\
\log {a^b} = b\log a \;
$
The differentiation of a function $ g\left( x \right) $ which is equal to $ \log \left( {f\left( x \right)} \right) $ is given by $ \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) $ which is equal to $ \dfrac{1}{{f\left( x \right)}} \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

