
For $x \in R$ , $x \ne 0$ , $x \ne 1$ , let ${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$ and ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ , n = 0, 1, 2, ….Then the value of ${f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right)$ is equal to
A. $\dfrac{8}{3}$
B. $\dfrac{5}{3}$
C. $\dfrac{1}{3}$
D. $\dfrac{4}{3}$
Answer
585.6k+ views
Hint: First, we will find ${f_1}\left( x \right)$ by using ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ and substitute $x = \dfrac{2}{3}$ in ${f_1}\left( x \right)$ to get ${f_1}\left( {\dfrac{2}{3}} \right)$ .Similarly, we will find the value of ${f_2}\left( {\dfrac{3}{2}} \right)$ and ${f_{100}}\left( 3 \right)$ and after summing all three, we can get the correct answer.
Complete step-by-step answer:
We have been given that
${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$
Also, ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ .
So, ${f_1}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right)$
Hence, using the given formula, we can write ${f_1}\left( x \right)$ as
\[
= \dfrac{1}{{1 - {f_0}\left( x \right)}} \\
= \dfrac{1}{{1 - \left( {\dfrac{1}{{1 - x}}} \right)}} \\
= \dfrac{1}{{\left( {\dfrac{{1 - x - 1}}{{1 - x}}} \right)}} \\
\]
\[
= \dfrac{{1 - x}}{{ - x}} \\
= \dfrac{{x - 1}}{x} \\
\]
$\therefore {f_1}\left( {\dfrac{2}{3}} \right) = \dfrac{{\dfrac{2}{3} - 1}}{{\dfrac{2}{3}}}$
$
= \dfrac{{\dfrac{{2 - 3}}{3}}}{{\dfrac{2}{3}}} \\
= \dfrac{{ - 1}}{2} \\
$
Now, ${f_2}\left( x \right) = {f_0}\left( {{f_1}\left( x \right)} \right)$
$
= \dfrac{1}{{1 - {f_1}\left( x \right)}} \\
= \dfrac{1}{{1 - \left( {\dfrac{{x - 1}}{x}} \right)}} \\
= \dfrac{1}{{\left( {\dfrac{{x - x + 1}}{x}} \right)}} \\
= \dfrac{x}{1} \\
= x \\
$
\[\therefore {f_2}\left( {\dfrac{3}{2}} \right) = \dfrac{3}{2}\]
Now, ${f_3}\left( x \right) = {f_0}\left( {{f_2}\left( x \right)} \right)$
$
= \dfrac{1}{{1 - {f_2}\left( x \right)}} \\
= \dfrac{1}{{1 - x}} \\
$
Similarly, ${f_{100}}\left( x \right) = \dfrac{{x - 1}}{x}$
$\therefore {f_{100}}\left( 3 \right) = \dfrac{{3 - 1}}{3}$
\[\] $ = \dfrac{2}{3}$
Now, adding ${f_{100}}\left( 3 \right)$ , ${f_1}\left( {\dfrac{2}{3}} \right)$ and ${f_2}\left( {\dfrac{3}{2}} \right)$ .
\[
= {f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right) \\
= \dfrac{2}{3} - \dfrac{1}{2} + \dfrac{3}{2} \\
= \dfrac{{4- 3 + 9}}{6} \\
= \dfrac{{10}}{6} \\
= \dfrac{5}{3} \\
\]
Thus, Option (B) $\dfrac{5}{3}$ is the correct answer.
Note: The ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ can be done as $fog\left( x \right) = f\left( {g\left( x \right)} \right)$ , in which we need to put value of \[g\left( x \right)\] first and then we can find the value of \[f\left( {g\left( x \right)} \right)\] i.e. $fog(x)$
For example, let $f\left( x \right) = 1 + {x^2}$ and $g\left( x \right) = {x^3}$
$\therefore fog\left( x \right) = f\left( {g\left( x \right)} \right)$
$
= 1 + {\left( {{x^3}} \right)^2} \\
= 1 + {x^6} \\
$
Complete step-by-step answer:
We have been given that
${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$
Also, ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ .
So, ${f_1}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right)$
Hence, using the given formula, we can write ${f_1}\left( x \right)$ as
\[
= \dfrac{1}{{1 - {f_0}\left( x \right)}} \\
= \dfrac{1}{{1 - \left( {\dfrac{1}{{1 - x}}} \right)}} \\
= \dfrac{1}{{\left( {\dfrac{{1 - x - 1}}{{1 - x}}} \right)}} \\
\]
\[
= \dfrac{{1 - x}}{{ - x}} \\
= \dfrac{{x - 1}}{x} \\
\]
$\therefore {f_1}\left( {\dfrac{2}{3}} \right) = \dfrac{{\dfrac{2}{3} - 1}}{{\dfrac{2}{3}}}$
$
= \dfrac{{\dfrac{{2 - 3}}{3}}}{{\dfrac{2}{3}}} \\
= \dfrac{{ - 1}}{2} \\
$
Now, ${f_2}\left( x \right) = {f_0}\left( {{f_1}\left( x \right)} \right)$
$
= \dfrac{1}{{1 - {f_1}\left( x \right)}} \\
= \dfrac{1}{{1 - \left( {\dfrac{{x - 1}}{x}} \right)}} \\
= \dfrac{1}{{\left( {\dfrac{{x - x + 1}}{x}} \right)}} \\
= \dfrac{x}{1} \\
= x \\
$
\[\therefore {f_2}\left( {\dfrac{3}{2}} \right) = \dfrac{3}{2}\]
Now, ${f_3}\left( x \right) = {f_0}\left( {{f_2}\left( x \right)} \right)$
$
= \dfrac{1}{{1 - {f_2}\left( x \right)}} \\
= \dfrac{1}{{1 - x}} \\
$
Similarly, ${f_{100}}\left( x \right) = \dfrac{{x - 1}}{x}$
$\therefore {f_{100}}\left( 3 \right) = \dfrac{{3 - 1}}{3}$
\[\] $ = \dfrac{2}{3}$
Now, adding ${f_{100}}\left( 3 \right)$ , ${f_1}\left( {\dfrac{2}{3}} \right)$ and ${f_2}\left( {\dfrac{3}{2}} \right)$ .
\[
= {f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right) \\
= \dfrac{2}{3} - \dfrac{1}{2} + \dfrac{3}{2} \\
= \dfrac{{4- 3 + 9}}{6} \\
= \dfrac{{10}}{6} \\
= \dfrac{5}{3} \\
\]
Thus, Option (B) $\dfrac{5}{3}$ is the correct answer.
Note: The ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ can be done as $fog\left( x \right) = f\left( {g\left( x \right)} \right)$ , in which we need to put value of \[g\left( x \right)\] first and then we can find the value of \[f\left( {g\left( x \right)} \right)\] i.e. $fog(x)$
For example, let $f\left( x \right) = 1 + {x^2}$ and $g\left( x \right) = {x^3}$
$\therefore fog\left( x \right) = f\left( {g\left( x \right)} \right)$
$
= 1 + {\left( {{x^3}} \right)^2} \\
= 1 + {x^6} \\
$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

