
For what value of $\lambda $ the sum of the squares of the root of ${{x}^{2}}+\left( 2+\lambda \right)x-\dfrac{1}{2}\left( 1+\lambda \right)=0$ is minimum.
Answer
585.9k+ views
Hint:This question involves a simple concept of quadratic equation and its roots. Here in given equation we have to get sum of roots and products of roots and then by using the formula –
${{\alpha }^{2}}+{{\beta }^{2}}={{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta $
We can get ${{\left( \alpha +\beta \right)}^{2}}$in terms of$\lambda $, then we get quadratic equation in terms of$\lambda $. We can then calculate $\lambda $for minimum value of the quadratic by making perfect square.
Complete step by step answer:
(i) Let a quadratic equation $a{{x}^{2}}+bx+c=0$ has roots $\alpha $ and$\beta $.
Then,
Sum of roots $=-\dfrac{b}{a}$
Product of roots $=\dfrac{c}{a}$
(ii) For making sum of the squares of roots minimum
$a{{x}^{2}}+bx+c=0$
By taking $'a'$ common from the equation,
$a\left( {{x}^{2}}+\dfrac{bx}{a}+\dfrac{c}{a} \right)=0$
$\because a\ne 0$
$\Rightarrow {{x}^{2}}+\dfrac{bx}{a}+\dfrac{c}{a}=0$
$\Rightarrow {{\left( x+\dfrac{b}{2a} \right)}^{2}}+\dfrac{c}{a}-\dfrac{{{b}^{2}}}{4{{a}^{2}}}=0$
For making sum of the squares of roots minimum, perfect square should be zero.
So, $x+\dfrac{b}{2a}=0$
$\Rightarrow x=-\dfrac{b}{2a}$
For$x=-\dfrac{b}{2a}$, equation $a{{x}^{2}}+bx+c=0$will be minimum.
Let minimum value be$y$.
So,
$y=\left( \dfrac{c}{a}-\dfrac{{{b}^{2}}}{4{{a}^{2}}} \right)a$
$\Rightarrow y=\left( \dfrac{4ac-{{b}^{2}}}{4{{a}^{2}}} \right)a$
$\Rightarrow y=\left( \dfrac{-D}{4a} \right)$
Now, given equation is –
${{x}^{2}}+\left( 2+\lambda \right)x-\dfrac{1}{2}\left( 1+\lambda \right)=0$
Let this equation has roots $\alpha $ and$\beta $. Now by comparing this equation with$a{{x}^{2}}+bx+c=0$, we have
$a=1$ , $\Rightarrow b=\left( 2+\lambda \right)$ , $\Rightarrow c=-\dfrac{1}{2}\left( 1+\lambda \right)$
Sum of roots $=-\dfrac{b}{a}$
$\Rightarrow \alpha +\beta =-\left( \lambda +2 \right)$
Product of roots $=\dfrac{c}{a}$
\[\Rightarrow \alpha \beta =-\dfrac{1}{2}\left( \lambda +1 \right)\]
Now according to the question, we have to get the value of${{\alpha }^{2}}+{{\beta }^{2}}$.
\[{{\alpha }^{2}}+{{\beta }^{2}}={{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \]
Let us put the values in this equation.
\[\Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}={{\left\{ -\left( \lambda +2 \right) \right\}}^{2}}-2\left\{ -\dfrac{1}{2}\left( \lambda +1 \right) \right\}\]
\[\Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}={{\lambda }^{2}}+4\lambda +4+\left( \lambda +1 \right)\]
\[\Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}={{\lambda }^{2}}+5\lambda +5\]
Now we have to calculate $\lambda $ for minimum\[{{\alpha }^{2}}+{{\beta }^{2}}\], so we will make perfect square.
\[{{\alpha }^{2}}+{{\beta }^{2}}={{\lambda }^{2}}+5\lambda +5\]
\[={{\left( \lambda +\dfrac{5}{2} \right)}^{2}}+5-\dfrac{25}{4}\]
\[={{\left( \lambda +\dfrac{5}{2} \right)}^{2}}-\dfrac{5}{4}\]
For minimum \[{{\alpha }^{2}}+{{\beta }^{2}}\], square should be zero.
\[\Rightarrow {{\left( \lambda +\dfrac{5}{2} \right)}^{2}}=0\]
\[\Rightarrow \lambda +\dfrac{5}{2}=0\]
\[\Rightarrow \lambda =-\dfrac{5}{2}\]
Hence, for\[\lambda =-\dfrac{5}{2}\], \[{{\alpha }^{2}}+{{\beta }^{2}}\]will be minimum.
Note:
In this question, while making square of the equation, we have to take care that the term of $x$ will be compared with the term $2ab$ of square of${{\left( a+b \right)}^{2}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)$.
Let the equation is${{x}^{2}}+px+q$, and we compare this equation with ${{\left( a+b \right)}^{2}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)$
$\Rightarrow a=x$ , $\Rightarrow 2b=p$ $\Rightarrow b=\dfrac{p}{2}$
So,
${{x}^{2}}+px+q={{\left( x+\dfrac{p}{2} \right)}^{2}}+q-\dfrac{{{p}^{2}}}{4}$
(ii) In the formula${{\alpha }^{2}}+{{\beta }^{2}}={{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta $, sign negative is important. Students make mistake that they take positive instead of negative.
${{\alpha }^{2}}+{{\beta }^{2}}={{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta $
We can get ${{\left( \alpha +\beta \right)}^{2}}$in terms of$\lambda $, then we get quadratic equation in terms of$\lambda $. We can then calculate $\lambda $for minimum value of the quadratic by making perfect square.
Complete step by step answer:
(i) Let a quadratic equation $a{{x}^{2}}+bx+c=0$ has roots $\alpha $ and$\beta $.
Then,
Sum of roots $=-\dfrac{b}{a}$
Product of roots $=\dfrac{c}{a}$
(ii) For making sum of the squares of roots minimum
$a{{x}^{2}}+bx+c=0$
By taking $'a'$ common from the equation,
$a\left( {{x}^{2}}+\dfrac{bx}{a}+\dfrac{c}{a} \right)=0$
$\because a\ne 0$
$\Rightarrow {{x}^{2}}+\dfrac{bx}{a}+\dfrac{c}{a}=0$
$\Rightarrow {{\left( x+\dfrac{b}{2a} \right)}^{2}}+\dfrac{c}{a}-\dfrac{{{b}^{2}}}{4{{a}^{2}}}=0$
For making sum of the squares of roots minimum, perfect square should be zero.
So, $x+\dfrac{b}{2a}=0$
$\Rightarrow x=-\dfrac{b}{2a}$
For$x=-\dfrac{b}{2a}$, equation $a{{x}^{2}}+bx+c=0$will be minimum.
Let minimum value be$y$.
So,
$y=\left( \dfrac{c}{a}-\dfrac{{{b}^{2}}}{4{{a}^{2}}} \right)a$
$\Rightarrow y=\left( \dfrac{4ac-{{b}^{2}}}{4{{a}^{2}}} \right)a$
$\Rightarrow y=\left( \dfrac{-D}{4a} \right)$
Now, given equation is –
${{x}^{2}}+\left( 2+\lambda \right)x-\dfrac{1}{2}\left( 1+\lambda \right)=0$
Let this equation has roots $\alpha $ and$\beta $. Now by comparing this equation with$a{{x}^{2}}+bx+c=0$, we have
$a=1$ , $\Rightarrow b=\left( 2+\lambda \right)$ , $\Rightarrow c=-\dfrac{1}{2}\left( 1+\lambda \right)$
Sum of roots $=-\dfrac{b}{a}$
$\Rightarrow \alpha +\beta =-\left( \lambda +2 \right)$
Product of roots $=\dfrac{c}{a}$
\[\Rightarrow \alpha \beta =-\dfrac{1}{2}\left( \lambda +1 \right)\]
Now according to the question, we have to get the value of${{\alpha }^{2}}+{{\beta }^{2}}$.
\[{{\alpha }^{2}}+{{\beta }^{2}}={{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \]
Let us put the values in this equation.
\[\Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}={{\left\{ -\left( \lambda +2 \right) \right\}}^{2}}-2\left\{ -\dfrac{1}{2}\left( \lambda +1 \right) \right\}\]
\[\Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}={{\lambda }^{2}}+4\lambda +4+\left( \lambda +1 \right)\]
\[\Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}={{\lambda }^{2}}+5\lambda +5\]
Now we have to calculate $\lambda $ for minimum\[{{\alpha }^{2}}+{{\beta }^{2}}\], so we will make perfect square.
\[{{\alpha }^{2}}+{{\beta }^{2}}={{\lambda }^{2}}+5\lambda +5\]
\[={{\left( \lambda +\dfrac{5}{2} \right)}^{2}}+5-\dfrac{25}{4}\]
\[={{\left( \lambda +\dfrac{5}{2} \right)}^{2}}-\dfrac{5}{4}\]
For minimum \[{{\alpha }^{2}}+{{\beta }^{2}}\], square should be zero.
\[\Rightarrow {{\left( \lambda +\dfrac{5}{2} \right)}^{2}}=0\]
\[\Rightarrow \lambda +\dfrac{5}{2}=0\]
\[\Rightarrow \lambda =-\dfrac{5}{2}\]
Hence, for\[\lambda =-\dfrac{5}{2}\], \[{{\alpha }^{2}}+{{\beta }^{2}}\]will be minimum.
Note:
In this question, while making square of the equation, we have to take care that the term of $x$ will be compared with the term $2ab$ of square of${{\left( a+b \right)}^{2}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)$.
Let the equation is${{x}^{2}}+px+q$, and we compare this equation with ${{\left( a+b \right)}^{2}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)$
$\Rightarrow a=x$ , $\Rightarrow 2b=p$ $\Rightarrow b=\dfrac{p}{2}$
So,
${{x}^{2}}+px+q={{\left( x+\dfrac{p}{2} \right)}^{2}}+q-\dfrac{{{p}^{2}}}{4}$
(ii) In the formula${{\alpha }^{2}}+{{\beta }^{2}}={{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta $, sign negative is important. Students make mistake that they take positive instead of negative.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

