
For vector $\overrightarrow{a}$, if $\left| \overrightarrow{a} \right|=a$, then write the value of ${{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}$.
Answer
475.8k+ views
Hint: First find the value of a in terms of x, y, z by applying dot product on $\left| \overrightarrow{a} \right|$. After that find the values of $\left( \overrightarrow{a}\times \hat{i} \right)$, $\left( \overrightarrow{a}\times \hat{j} \right)$ and $\left( \overrightarrow{a}\times \hat{k} \right)$ by applying cross product rule. Then square each term and add them. Now take commonly from them and substitute the values derived from the $\left| \overrightarrow{a} \right|$.
Complete step by step answer:
Given: $\left| \overrightarrow{a} \right|=a$
Let the vector be $\overrightarrow{a}=x\hat{i}+y\hat{j}+z\hat{k}$.
Since $\left| \overrightarrow{a} \right|=a$. Then,
$\Rightarrow \sqrt{{{\left( x\hat{i} \right)}^{2}}+{{\left( y\hat{j} \right)}^{2}}+{{\left( z\hat{k} \right)}^{2}}}=a$
As we know the dot product of any unit vector with any other is zero, $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{i}=0$. So,
$\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}={{a}^{2}}$
Square both sides of the equation,
$\Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{a}^{2}}$ …………….….. (1)
Now,
$\Rightarrow \overrightarrow{a}\times \hat{i}=\left( x\hat{i}+y\hat{j}+z\hat{k} \right)\times \hat{i}$
Multiply the terms on the right side,
$\Rightarrow \overrightarrow{a}\times \hat{i}=x\hat{i}\times \hat{i}+y\hat{j}\times \hat{i}+z\hat{k}\times \hat{i}$
Since the cross product must be perpendicular to the two-unit vectors, it must be equal to the other unit vector or the opposite of that unit vector. The cross product of any unit vector with itself is zero, $\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0$.
$\Rightarrow \overrightarrow{a}\times \hat{i}=x\left( 0 \right)+y\left( -\hat{k} \right)+z\left( {\hat{j}} \right)$
Multiply the terms,
$\Rightarrow \overrightarrow{a}\times \hat{i}=-y\hat{k}+z\hat{j}$
Similarly,
$\Rightarrow \overrightarrow{a}\times \hat{j}=x\hat{k}-z\hat{i}$
$\Rightarrow \overrightarrow{a}\times \hat{k}=-x\hat{j}+y\hat{i}$
Substitute the values,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}={{\left( -y\hat{k}+z\hat{j} \right)}^{2}}+{{\left( x\hat{k}-z\hat{i} \right)}^{2}}+{{\left( -x\hat{j}+y\hat{i} \right)}^{2}}$
As we know the dot product of any unit vector with any other is zero, $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{i}=0$. So,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}={{\left( -y\hat{k} \right)}^{2}}+{{\left( z\hat{j} \right)}^{2}}+{{\left( x\hat{k} \right)}^{2}}+{{\left( -z\hat{i} \right)}^{2}}+{{\left( -x\hat{j} \right)}^{2}}+{{\left( y\hat{i} \right)}^{2}}$
Square the terms,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}={{y}^{2}}+{{z}^{2}}+{{x}^{2}}+{{z}^{2}}+{{x}^{2}}+{{y}^{2}}$
Add the lime terms,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}=2{{x}^{2}}+2{{y}^{2}}+2{{z}^{2}}$
Take 2 commons from the right side,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}=2\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$
Substitute the value from equation (1),
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}=2{{a}^{2}}$
Hence, the value of ${{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}$ is $2{{a}^{2}}$.
Note:
The vector can be multiplied by,
Dot product:- The dot product of two vectors is the magnitude of one time the projection of the second onto the first.
Since a vector has no projection perpendicular to itself, the dot product of any unit vector with any other is zero.
$\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1$
Cross product:- The cross product of two vectors is the area of the parallelogram between them.
The cross product of any unit vector with itself is zero.
$\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0$
Complete step by step answer:
Given: $\left| \overrightarrow{a} \right|=a$
Let the vector be $\overrightarrow{a}=x\hat{i}+y\hat{j}+z\hat{k}$.
Since $\left| \overrightarrow{a} \right|=a$. Then,
$\Rightarrow \sqrt{{{\left( x\hat{i} \right)}^{2}}+{{\left( y\hat{j} \right)}^{2}}+{{\left( z\hat{k} \right)}^{2}}}=a$
As we know the dot product of any unit vector with any other is zero, $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{i}=0$. So,
$\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}={{a}^{2}}$
Square both sides of the equation,
$\Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{a}^{2}}$ …………….….. (1)
Now,
$\Rightarrow \overrightarrow{a}\times \hat{i}=\left( x\hat{i}+y\hat{j}+z\hat{k} \right)\times \hat{i}$
Multiply the terms on the right side,
$\Rightarrow \overrightarrow{a}\times \hat{i}=x\hat{i}\times \hat{i}+y\hat{j}\times \hat{i}+z\hat{k}\times \hat{i}$
Since the cross product must be perpendicular to the two-unit vectors, it must be equal to the other unit vector or the opposite of that unit vector. The cross product of any unit vector with itself is zero, $\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0$.
$\Rightarrow \overrightarrow{a}\times \hat{i}=x\left( 0 \right)+y\left( -\hat{k} \right)+z\left( {\hat{j}} \right)$
Multiply the terms,
$\Rightarrow \overrightarrow{a}\times \hat{i}=-y\hat{k}+z\hat{j}$
Similarly,
$\Rightarrow \overrightarrow{a}\times \hat{j}=x\hat{k}-z\hat{i}$
$\Rightarrow \overrightarrow{a}\times \hat{k}=-x\hat{j}+y\hat{i}$
Substitute the values,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}={{\left( -y\hat{k}+z\hat{j} \right)}^{2}}+{{\left( x\hat{k}-z\hat{i} \right)}^{2}}+{{\left( -x\hat{j}+y\hat{i} \right)}^{2}}$
As we know the dot product of any unit vector with any other is zero, $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{i}=0$. So,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}={{\left( -y\hat{k} \right)}^{2}}+{{\left( z\hat{j} \right)}^{2}}+{{\left( x\hat{k} \right)}^{2}}+{{\left( -z\hat{i} \right)}^{2}}+{{\left( -x\hat{j} \right)}^{2}}+{{\left( y\hat{i} \right)}^{2}}$
Square the terms,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}={{y}^{2}}+{{z}^{2}}+{{x}^{2}}+{{z}^{2}}+{{x}^{2}}+{{y}^{2}}$
Add the lime terms,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}=2{{x}^{2}}+2{{y}^{2}}+2{{z}^{2}}$
Take 2 commons from the right side,
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}=2\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$
Substitute the value from equation (1),
$\Rightarrow {{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}=2{{a}^{2}}$
Hence, the value of ${{\left( \overrightarrow{a}\times \hat{i} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{j} \right)}^{2}}+{{\left( \overrightarrow{a}\times \hat{k} \right)}^{2}}$ is $2{{a}^{2}}$.
Note:
The vector can be multiplied by,
Dot product:- The dot product of two vectors is the magnitude of one time the projection of the second onto the first.
Since a vector has no projection perpendicular to itself, the dot product of any unit vector with any other is zero.
$\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1$
Cross product:- The cross product of two vectors is the area of the parallelogram between them.
The cross product of any unit vector with itself is zero.
$\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
