
For the reaction \[{\text{4N}}{{\text{H}}_{\text{3}}}{\text{ + 5}}{{\text{O}}_{\text{2}}} \to \,{\text{4NO}}\,{\text{ + }}\,{\text{6}}{{\text{H}}_{\text{2}}}{\text{O}}\], the rate of reaction with respect to \[{\text{N}}{{\text{H}}_{\text{3}}}\] is \[2 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\]. Find the rate of the reaction with respect to oxygen in \[\,{\text{M}}{{\text{s}}^{ - 1}}\].
Answer
547.5k+ views
Hint:The rate is used to determine the speed of the reaction. Chemical Kinetics is used to determine the rates of the carious chemical reaction.The rate of the reaction is given in terms of the change in concentration of species that are either reactants or products. The unit of the rate of reaction is the unit the concentration per time.
Complete solution:
Here, the reaction given is as follows:
\[{\text{4N}}{{\text{H}}_{\text{3}}}{\text{ + 5}}{{\text{O}}_{\text{2}}} \to \,{\text{4NO}}\,{\text{ + }}\,{\text{6}}{{\text{H}}_{\text{2}}}{\text{O}}\]
For this reaction the rate can be written as follows:
{\text{rate}}\,{\text{of}}\,{\text{reaction = decrease}}\,{\text{in}}\,{\text{concentration}}\,{\text{of}}\,{\text{reactants = }} \\
{\text{increase}}\,{\text{in}}\,{\text{concentration}}\,{\text{of}}\,{\text{products}} \\
\[{\text{rate = - }}\dfrac{1}{4} \times \dfrac{{d\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{1}{5} \times \dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = + }}\dfrac{1}{4} \times \dfrac{{d\left[ {{\text{NO}}} \right]}}{{dt}} = {\text{ + }}\dfrac{1}{5} \times \dfrac{{d\left[ {{{\text{H}}_{\text{2}}}{\text{O}}} \right]}}{{dt}}\]
Here, the rate is expressed per mole.
From this equation, we can equate the rate of ammonia and oxygen to determine the rate of oxygen.
\[{\text{ - }}\dfrac{1}{4} \times \dfrac{{d\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{1}{5} \times \dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}\]
Now, rearrange the equation to determine the rate of oxygen.
\[{\text{ - }}\dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{5}{4} \times \dfrac{{d\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}}{{dt}}\]
Here, substitutes the value of the rate concerning ammonia as \[2 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\].
\[{\text{ - }}\dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{5}{4} \times 2 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\]
\[{\text{ - }}\dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = }}2.5 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\]
Thus, the rate of reaction concerning oxygen obtained is \[2.5 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\].
Note:As the reaction proceeds the concentration of the reactants decreases and simultaneously concentration of products increases. Therefore, the rate of reaction is given in terms of the decrease in the concentration of reactants or an increase in the concentration of products.
The rate is expressed per mole hence while determining the rate of species it is divide by the coefficients.
Complete solution:
Here, the reaction given is as follows:
\[{\text{4N}}{{\text{H}}_{\text{3}}}{\text{ + 5}}{{\text{O}}_{\text{2}}} \to \,{\text{4NO}}\,{\text{ + }}\,{\text{6}}{{\text{H}}_{\text{2}}}{\text{O}}\]
For this reaction the rate can be written as follows:
{\text{rate}}\,{\text{of}}\,{\text{reaction = decrease}}\,{\text{in}}\,{\text{concentration}}\,{\text{of}}\,{\text{reactants = }} \\
{\text{increase}}\,{\text{in}}\,{\text{concentration}}\,{\text{of}}\,{\text{products}} \\
\[{\text{rate = - }}\dfrac{1}{4} \times \dfrac{{d\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{1}{5} \times \dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = + }}\dfrac{1}{4} \times \dfrac{{d\left[ {{\text{NO}}} \right]}}{{dt}} = {\text{ + }}\dfrac{1}{5} \times \dfrac{{d\left[ {{{\text{H}}_{\text{2}}}{\text{O}}} \right]}}{{dt}}\]
Here, the rate is expressed per mole.
From this equation, we can equate the rate of ammonia and oxygen to determine the rate of oxygen.
\[{\text{ - }}\dfrac{1}{4} \times \dfrac{{d\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{1}{5} \times \dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}\]
Now, rearrange the equation to determine the rate of oxygen.
\[{\text{ - }}\dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{5}{4} \times \dfrac{{d\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}}{{dt}}\]
Here, substitutes the value of the rate concerning ammonia as \[2 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\].
\[{\text{ - }}\dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = - }}\dfrac{5}{4} \times 2 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\]
\[{\text{ - }}\dfrac{{d\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{dt}}{\text{ = }}2.5 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\]
Thus, the rate of reaction concerning oxygen obtained is \[2.5 \times {10^{ - 3}}\,{\text{M}}{{\text{s}}^{ - 1}}\].
Note:As the reaction proceeds the concentration of the reactants decreases and simultaneously concentration of products increases. Therefore, the rate of reaction is given in terms of the decrease in the concentration of reactants or an increase in the concentration of products.
The rate is expressed per mole hence while determining the rate of species it is divide by the coefficients.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

