
For the principal value, evaluate the following
\[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\]
Answer
593.1k+ views
Hint:First of all, use \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\] and then use a trigonometric table to find the value of \[{{\operatorname{cosec}}^{-1}}\left( 2 \right)\]. Now use \[\cos \left( -\theta \right)=\cos \theta \] and again use the table to find the value of \[\cos \dfrac{\pi }{3}\]. Find the angle at which \[\sin \theta =\dfrac{1}{2}\] from the table or the value of \[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] to get the required answer.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\]
We know that, \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2{{\operatorname{cosec}}^{-1}}2 \right) \right]....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we can see that,
\[\operatorname{cosec}\left( \dfrac{\pi }{6} \right)=2\]
\[\Rightarrow {{\operatorname{cosec}}^{-1}}\left( 2 \right)=\dfrac{\pi }{6}\]
So, by substituting the value of \[{{\operatorname{cosec}}^{-1}}\left( 2 \right)\] in the expression (i), we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2.\dfrac{\pi }{6} \right) \right]\]
\[E={{\sin }^{-1}}\left[ \cos \left( -\dfrac{\pi }{3} \right) \right]\]
We know that, \[\cos \left( -\theta \right)=\cos \theta \]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \dfrac{\pi }{3} \right]\]
Now, from the trigonometric table, we can see that, \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\]. So, by substituting the value of \[\cos \dfrac{\pi }{3}\] in the above expression, we get,
\[E={{\sin }^{-1}}\left( \dfrac{1}{2} \right)....\left( ii \right)\]
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}\]
\[\Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}\]
Now by substituting the value of \[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] in the expression (ii), we get,
\[E=\dfrac{\pi }{6}\]
Hence, we get the value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\] as \[\dfrac{\pi }{6}\].
Note: In this question, students must take care that the value of the angle must lie in the range of \[{{\operatorname{cosec}}^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\] and \[{{\sin }^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] accordingly. Also, students can verify their answer by equating the given expression with \[\dfrac{\pi }{6}\] and taking sin on both sides and keep solving until LHS = RHS.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\]
We know that, \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2{{\operatorname{cosec}}^{-1}}2 \right) \right]....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we can see that,
\[\operatorname{cosec}\left( \dfrac{\pi }{6} \right)=2\]
\[\Rightarrow {{\operatorname{cosec}}^{-1}}\left( 2 \right)=\dfrac{\pi }{6}\]
So, by substituting the value of \[{{\operatorname{cosec}}^{-1}}\left( 2 \right)\] in the expression (i), we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2.\dfrac{\pi }{6} \right) \right]\]
\[E={{\sin }^{-1}}\left[ \cos \left( -\dfrac{\pi }{3} \right) \right]\]
We know that, \[\cos \left( -\theta \right)=\cos \theta \]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \dfrac{\pi }{3} \right]\]
Now, from the trigonometric table, we can see that, \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\]. So, by substituting the value of \[\cos \dfrac{\pi }{3}\] in the above expression, we get,
\[E={{\sin }^{-1}}\left( \dfrac{1}{2} \right)....\left( ii \right)\]
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}\]
\[\Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}\]
Now by substituting the value of \[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] in the expression (ii), we get,
\[E=\dfrac{\pi }{6}\]
Hence, we get the value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\] as \[\dfrac{\pi }{6}\].
Note: In this question, students must take care that the value of the angle must lie in the range of \[{{\operatorname{cosec}}^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\] and \[{{\sin }^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] accordingly. Also, students can verify their answer by equating the given expression with \[\dfrac{\pi }{6}\] and taking sin on both sides and keep solving until LHS = RHS.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

