
For the principal value, evaluate the following
\[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\].
Answer
593.4k+ views
Hint:First of all, use \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\] and \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x\] to simplify the given expression. Now from the trigonometric table, find the value of \[\theta \] at which \[\sin \theta =\dfrac{\sqrt{3}}{2}\] and \[\operatorname{cosec}\theta =\dfrac{2}{\sqrt{3}}\] or the value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] and \[{{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\] and substitute these in the given expression to get the required value.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\]
We know that, \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\]
We know that, \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-{{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right).....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\]
By taking \[{{\sin }^{-1}}\] on both the sides, we get,
\[{{\sin }^{-1}}\sin \left( \dfrac{\pi }{3} \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
We know that for \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2},{{\sin }^{-1}}\sin \left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)...\left( ii \right)\]
Now, we also know that the range of principal value of \[{{\operatorname{cosec}}^{-1}}x\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\]
From the table of trigonometric ratios, we get,
\[\operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}}\]
By taking \[{{\operatorname{cosec}}^{-1}}\] on both the sides, we get,
\[{{\operatorname{cosec}}^{-1}}\left( \operatorname{cosec}\left( \dfrac{\pi }{3} \right) \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\]
We know that for \[\left[ \dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} \right]-\left\{ 0 \right\},{{\operatorname{cosec}}^{-1}}\operatorname{cosec}\left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)....\left( iii \right)\]
So, by substituting the value of \[{{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\] from equation (iii) and \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] from equation (ii) in equation (i), we get,
\[E=-\dfrac{\pi }{3}-\dfrac{\pi }{3}\]
\[E=\dfrac{-2\pi }{3}\]
Hence, we get the value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\] as \[\dfrac{-2\pi }{3}\].
Note: In this question, many students make this mistake of taking \[{{\operatorname{cosec}}^{-1}}\left( -x \right)\] as \[\pi -{{\operatorname{cosec}}^{-1}}\left( x \right)\] like that in case of \[{{\sec }^{-1}}\left( -x \right)\] and \[{{\cot }^{-1}}\left( -x \right)\] which is wrong because \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}\left( x \right)\].Students must strictly take care of the domain and range of the inverse trigonometric functions. Also, students must take care that the angle they take must lie in the range of the respective trigonometric functions to get the required answer.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\]
We know that, \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\]
We know that, \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-{{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right).....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\]
By taking \[{{\sin }^{-1}}\] on both the sides, we get,
\[{{\sin }^{-1}}\sin \left( \dfrac{\pi }{3} \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
We know that for \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2},{{\sin }^{-1}}\sin \left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)...\left( ii \right)\]
Now, we also know that the range of principal value of \[{{\operatorname{cosec}}^{-1}}x\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\]
From the table of trigonometric ratios, we get,
\[\operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}}\]
By taking \[{{\operatorname{cosec}}^{-1}}\] on both the sides, we get,
\[{{\operatorname{cosec}}^{-1}}\left( \operatorname{cosec}\left( \dfrac{\pi }{3} \right) \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\]
We know that for \[\left[ \dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} \right]-\left\{ 0 \right\},{{\operatorname{cosec}}^{-1}}\operatorname{cosec}\left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)....\left( iii \right)\]
So, by substituting the value of \[{{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\] from equation (iii) and \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] from equation (ii) in equation (i), we get,
\[E=-\dfrac{\pi }{3}-\dfrac{\pi }{3}\]
\[E=\dfrac{-2\pi }{3}\]
Hence, we get the value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)+{{\operatorname{cosec}}^{-1}}\left( -\dfrac{2}{\sqrt{3}} \right)\] as \[\dfrac{-2\pi }{3}\].
Note: In this question, many students make this mistake of taking \[{{\operatorname{cosec}}^{-1}}\left( -x \right)\] as \[\pi -{{\operatorname{cosec}}^{-1}}\left( x \right)\] like that in case of \[{{\sec }^{-1}}\left( -x \right)\] and \[{{\cot }^{-1}}\left( -x \right)\] which is wrong because \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}\left( x \right)\].Students must strictly take care of the domain and range of the inverse trigonometric functions. Also, students must take care that the angle they take must lie in the range of the respective trigonometric functions to get the required answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

