
For the principal value, evaluate the following:
\[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\].
Answer
588.9k+ views
Hint:For the above question we will have to know about the principal value of an inverse trigonometric function is a value that belongs to the principal branch of range of function. We know that the principal branch of range for \[si{{n}^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] and for \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\]. We can start solving this question by taking \[\theta ={{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\] and then find the principal value of \[\theta \]. Then we can proceed to \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] in a similar way.
Complete step-by-step answer:
We have been given to evaluate the trigonometric expression \[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\].
Now we know that the principal value means the value which lies between the defined range of inverse trigonometric functions.
For \[si{{n}^{-1}}x\] the range is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
For \[{{\cos }^{-1}}x\] the range is \[\left[ 0,\pi \right]\].
Let us suppose \[\theta ={{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\].
We know that \[\sin \left( \dfrac{-\pi }{3} \right)=\dfrac{-\sqrt{3}}{2}\].
So, by substituting the value of \[\left( \dfrac{-\sqrt{3}}{2} \right)\] in the above expression, we get as follows:
\[\theta =si{{n}^{-1}}\left( \sin \dfrac{-\pi }{3} \right)\]
Since we know that \[si{{n}^{-1}}sinx=x\], where x must lie between the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
\[\Rightarrow \theta =\dfrac{-\pi }{3}\]
Hence \[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)=\dfrac{-\pi }{3}\].
Again, let us suppose \[\theta ={{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\].
We know that \[\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}\].
So by substituting the value of \[\left( \dfrac{\sqrt{3}}{2} \right)\] in the expression, we get as follows:
\[\theta ={{\cos }^{-1}}\cos \dfrac{\pi }{6}\]
Since we know that \[{{\cos }^{-1}}\operatorname{cosx}=x\], where x must lie between the interval \[\left[ 0,\pi \right]\].
\[\Rightarrow \theta =\dfrac{\pi }{6}\]
Hence \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}\].
Now substituting the values of \[si{{n}^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)=\dfrac{-\pi }{3}\] and \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}\] in the given expression we get as follows:
\[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{-\pi }{3}+\dfrac{\pi }{6}=\dfrac{-2\pi +\pi }{6}=\dfrac{-\pi }{6}\]
Therefore, the value of the given expression \[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] is equal to \[\dfrac{-\pi }{6}\].
Note: Be careful while finding the principal value of the inverse trigonometric function and do check it once that the value must lie between the principal branch of range of the function. Sometimes by mistake we take the value of \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{3}\] which is wrong. So be careful while solving as \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}\].
Complete step-by-step answer:
We have been given to evaluate the trigonometric expression \[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\].
Now we know that the principal value means the value which lies between the defined range of inverse trigonometric functions.
For \[si{{n}^{-1}}x\] the range is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
For \[{{\cos }^{-1}}x\] the range is \[\left[ 0,\pi \right]\].
Let us suppose \[\theta ={{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\].
We know that \[\sin \left( \dfrac{-\pi }{3} \right)=\dfrac{-\sqrt{3}}{2}\].
So, by substituting the value of \[\left( \dfrac{-\sqrt{3}}{2} \right)\] in the above expression, we get as follows:
\[\theta =si{{n}^{-1}}\left( \sin \dfrac{-\pi }{3} \right)\]
Since we know that \[si{{n}^{-1}}sinx=x\], where x must lie between the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
\[\Rightarrow \theta =\dfrac{-\pi }{3}\]
Hence \[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)=\dfrac{-\pi }{3}\].
Again, let us suppose \[\theta ={{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\].
We know that \[\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}\].
So by substituting the value of \[\left( \dfrac{\sqrt{3}}{2} \right)\] in the expression, we get as follows:
\[\theta ={{\cos }^{-1}}\cos \dfrac{\pi }{6}\]
Since we know that \[{{\cos }^{-1}}\operatorname{cosx}=x\], where x must lie between the interval \[\left[ 0,\pi \right]\].
\[\Rightarrow \theta =\dfrac{\pi }{6}\]
Hence \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}\].
Now substituting the values of \[si{{n}^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)=\dfrac{-\pi }{3}\] and \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}\] in the given expression we get as follows:
\[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{-\pi }{3}+\dfrac{\pi }{6}=\dfrac{-2\pi +\pi }{6}=\dfrac{-\pi }{6}\]
Therefore, the value of the given expression \[{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)+{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] is equal to \[\dfrac{-\pi }{6}\].
Note: Be careful while finding the principal value of the inverse trigonometric function and do check it once that the value must lie between the principal branch of range of the function. Sometimes by mistake we take the value of \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{3}\] which is wrong. So be careful while solving as \[{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}\].
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

