
For the principal value, evaluate the following:
\[{{\operatorname{cosec}}^{-1}}\left[ 2\tan \left( \dfrac{11\pi }{6} \right) \right]\].
Answer
607.8k+ views
Hint:For the above question we will have to know about the principal value of an inverse trigonometric function is a value that belongs to the principal branch of range of function. We know that the function branch of range for \[{{\operatorname{cosec}}^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\].
Complete step-by-step answer:
We have been given to evaluate the trigonometric expression \[\operatorname{cosec}\left[ 2\tan \left( \dfrac{11\pi }{6} \right) \right]\].
Now we know that the principal value means the value which lies between the defined range of inverse trigonometric function.
For \[{{\operatorname{cosec}}^{-1}}x\] the angle is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\].
We know that \[\tan \left( \dfrac{11\pi }{6} \right)=\tan \left( 2\pi -\dfrac{\pi }{6} \right)=-\tan \dfrac{\pi }{6}=\dfrac{-1}{\sqrt{3}}\].
Since \[\tan \left( 2\pi -\theta \right)=-\tan \theta \] as the value lies in the fourth quadrant and tangent value is negative in that quadrant
On substituting the values of \[\tan \dfrac{11\pi }{6}\] in the given expression, we get as follows:
\[{{\operatorname{cosec}}^{-1}}\left( 2\tan \dfrac{11\pi }{6} \right)={{\operatorname{cosec}}^{-1}}\left[ 2\left( \dfrac{-1}{\sqrt{3}} \right) \right]={{\operatorname{cosec}}^{-1}}\left( \dfrac{-2}{\sqrt{3}} \right)\]
We know that \[\operatorname{cosec}\left( \dfrac{-\pi }{3} \right)=\dfrac{-2}{\sqrt{3}}\].
By substituting the value of \[\left( \dfrac{-2}{\sqrt{3}} \right)\] in the expression, we get as follows:
\[{{\operatorname{cosec}}^{-1}}\left( 2\tan \dfrac{11\pi }{6} \right)={{\operatorname{cosec}}^{-1}}\left[ \operatorname{cosec}\left( \dfrac{-\pi }{3} \right) \right]\]
We know that \[{{\operatorname{cosec}}^{-1}}\operatorname{cosec}\theta \], where \[\theta \] must lie between the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\].
\[\Rightarrow {{\operatorname{cosec}}^{-1}}\left( 2\tan \dfrac{11\pi }{6} \right)=\dfrac{-\pi }{3}\]
Therefore, the principal value of the given expression is equal to \[\left( \dfrac{-\pi }{3} \right)\].
Note: Be careful while finding the principal value of the inverse trigonometric function and do check once that the value must lie between the principal branch of range of the function. Sometimes we forget the ‘2’ multiplied by \[\tan \dfrac{11\pi }{6}\] in the given expression and we just substitute the values of \[\tan \dfrac{11\pi }{6}\] and we get the incorrect answer. So be careful while solving.
Complete step-by-step answer:
We have been given to evaluate the trigonometric expression \[\operatorname{cosec}\left[ 2\tan \left( \dfrac{11\pi }{6} \right) \right]\].
Now we know that the principal value means the value which lies between the defined range of inverse trigonometric function.
For \[{{\operatorname{cosec}}^{-1}}x\] the angle is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\].
We know that \[\tan \left( \dfrac{11\pi }{6} \right)=\tan \left( 2\pi -\dfrac{\pi }{6} \right)=-\tan \dfrac{\pi }{6}=\dfrac{-1}{\sqrt{3}}\].
Since \[\tan \left( 2\pi -\theta \right)=-\tan \theta \] as the value lies in the fourth quadrant and tangent value is negative in that quadrant
On substituting the values of \[\tan \dfrac{11\pi }{6}\] in the given expression, we get as follows:
\[{{\operatorname{cosec}}^{-1}}\left( 2\tan \dfrac{11\pi }{6} \right)={{\operatorname{cosec}}^{-1}}\left[ 2\left( \dfrac{-1}{\sqrt{3}} \right) \right]={{\operatorname{cosec}}^{-1}}\left( \dfrac{-2}{\sqrt{3}} \right)\]
We know that \[\operatorname{cosec}\left( \dfrac{-\pi }{3} \right)=\dfrac{-2}{\sqrt{3}}\].
By substituting the value of \[\left( \dfrac{-2}{\sqrt{3}} \right)\] in the expression, we get as follows:
\[{{\operatorname{cosec}}^{-1}}\left( 2\tan \dfrac{11\pi }{6} \right)={{\operatorname{cosec}}^{-1}}\left[ \operatorname{cosec}\left( \dfrac{-\pi }{3} \right) \right]\]
We know that \[{{\operatorname{cosec}}^{-1}}\operatorname{cosec}\theta \], where \[\theta \] must lie between the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\].
\[\Rightarrow {{\operatorname{cosec}}^{-1}}\left( 2\tan \dfrac{11\pi }{6} \right)=\dfrac{-\pi }{3}\]
Therefore, the principal value of the given expression is equal to \[\left( \dfrac{-\pi }{3} \right)\].
Note: Be careful while finding the principal value of the inverse trigonometric function and do check once that the value must lie between the principal branch of range of the function. Sometimes we forget the ‘2’ multiplied by \[\tan \dfrac{11\pi }{6}\] in the given expression and we just substitute the values of \[\tan \dfrac{11\pi }{6}\] and we get the incorrect answer. So be careful while solving.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

