
For the matrix $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right)$, show that ${A^3} - 6{A^2} + 5A + 11I = 0$. Hence find ${A^{ - 1}}$.
Answer
565.8k+ views
Hint: Start by finding out the values of \[5A,{A^2}\& {A^3}\] by using the properties of matrix multiplication . Substitute these values in the given equation and find out ${A^{ - 1}}$ by rearranging the terms and using the identity $A \cdot {A^{ - 1}} = I$.
Complete step-by-step answer:
Given, $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right)$
Now, we need to show that the matrix A satisfies the equation
i.e. ${A^3} - 6{A^2} + 5A + 11I = 0$
Firstly, let us compute 5A
$5A = 5 \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right)$
Now, We know $A \cdot A = {A^2}$ and ${A^2} \cdot A = {A^3}$
Therefore , using the rule of multiplication of matrices i.e. Row by Column, we get
${A^2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}} \cdot {a_{11}} + {a_{12}} \cdot {a_{21}} + {a_{13}} \cdot {a_{31}}}&{{a_{11}} \cdot {a_{12}} + {a_{12}} \cdot {a_{22}} + {a_{13}} \cdot {a_{32}}}&{{a_{11}} \cdot {a_{13}} + {a_{12}} \cdot {a_{23}} + {a_{13}} \cdot {a_{33}}} \\
{{a_{21}} \cdot {a_{11}} + {a_{22}} \cdot {a_{21}} + {a_{23}} \cdot {a_{31}}}&{{a_{21}} \cdot {a_{12}} + {a_{22}} \cdot {a_{22}} + {a_{23}} \cdot {a_{32}}}&{{a_{21}} \cdot {a_{13}} + {a_{22}} \cdot {a_{23}} + {a_{23}} \cdot {a_{33}}} \\
{{a_{31}} \cdot {a_{11}} + {a_{32}} \cdot {a_{21}} + {a_{33}} \cdot {a_{31}}}&{{a_{31}} \cdot {a_{12}} + {a_{32}} \cdot {a_{22}} + {a_{33}} \cdot {a_{32}}}&{{a_{31}} \cdot {a_{13}} + {a_{32}} \cdot {a_{23}} + {a_{33}} \cdot {a_{33}}}
\end{array}} \right)$
Substituting the values , we get
${A^2} = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right)$
So , $6{A^2} = \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right)$
Now , similarly we will find ${A^3} = {A^2} \cdot A$
Substituting the values of ${A^2}\& A$,
$
{A^3} = {A^2} \cdot A = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{4 \times 1 + 2 \times 1 + 1 \times 2}&{4 \times 1 + 2 \times 2 - 1 \times 1}&{4 \times 1 - 2 \times 3 + 1 \times 3} \\
{ - 3 \times 1 + 8 \times 1 - 14 \times 2}&{ - 3 \times 1 + 8 \times 2 + 14 \times 1}&{ - 3 \times 1 - 8 \times 3 - 14 \times 3} \\
{7 \times 1 - 3 \times 1 + 14 \times 2}&{7 \times 1 - 3 \times 2 - 14 \times 1}&{7 \times 1 + 3 \times 3 + 14 \times 3}
\end{array}} \right) \\
{A^3} = \left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) \\
$
Now substituting all the values in the equation ${A^3} - 6{A^2} + 5A + 11I = 0$, we get
$\left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{11}&0&0 \\
0&{11}&0 \\
0&0&{11}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now, from this we will find ${A^{ - 1}}$
$ - 11I = {A^3} - 6{A^2} + 5A$
Multiplying both side by ${A^{ - 1}}$ , we get
$ - 11{A^{ - 1}} = {A^2} - 6A + 5I\left( {\because A \cdot {A^{ - 1}} = I} \right)$
${A^{ - 1}} = \dfrac{{{A^2} - 6A + 5I}}{{ - 11}}$
Now , substitute the values of A and I , we get
$\therefore {A^{ - 1}} = \dfrac{{ - 1}}{{11}}\left( {\begin{array}{*{20}{c}}
3&{ - 4}&{ - 5} \\
{ - 9}&1&4 \\
{ - 5}&3&1
\end{array}} \right)$
Note: Two matrices can be multiplied if and only if the number of columns of the pre matrix is equal to the number of rows of the post matrix (AB, A is pre matrix, B is post matrix). Students must remember all the properties and identities related to matrices and determinants , As they are very important from an exam point of view as well as for faster calculations.
Complete step-by-step answer:
Given, $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right)$
Now, we need to show that the matrix A satisfies the equation
i.e. ${A^3} - 6{A^2} + 5A + 11I = 0$
Firstly, let us compute 5A
$5A = 5 \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right)$
Now, We know $A \cdot A = {A^2}$ and ${A^2} \cdot A = {A^3}$
Therefore , using the rule of multiplication of matrices i.e. Row by Column, we get
${A^2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}} \cdot {a_{11}} + {a_{12}} \cdot {a_{21}} + {a_{13}} \cdot {a_{31}}}&{{a_{11}} \cdot {a_{12}} + {a_{12}} \cdot {a_{22}} + {a_{13}} \cdot {a_{32}}}&{{a_{11}} \cdot {a_{13}} + {a_{12}} \cdot {a_{23}} + {a_{13}} \cdot {a_{33}}} \\
{{a_{21}} \cdot {a_{11}} + {a_{22}} \cdot {a_{21}} + {a_{23}} \cdot {a_{31}}}&{{a_{21}} \cdot {a_{12}} + {a_{22}} \cdot {a_{22}} + {a_{23}} \cdot {a_{32}}}&{{a_{21}} \cdot {a_{13}} + {a_{22}} \cdot {a_{23}} + {a_{23}} \cdot {a_{33}}} \\
{{a_{31}} \cdot {a_{11}} + {a_{32}} \cdot {a_{21}} + {a_{33}} \cdot {a_{31}}}&{{a_{31}} \cdot {a_{12}} + {a_{32}} \cdot {a_{22}} + {a_{33}} \cdot {a_{32}}}&{{a_{31}} \cdot {a_{13}} + {a_{32}} \cdot {a_{23}} + {a_{33}} \cdot {a_{33}}}
\end{array}} \right)$
Substituting the values , we get
${A^2} = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right)$
So , $6{A^2} = \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right)$
Now , similarly we will find ${A^3} = {A^2} \cdot A$
Substituting the values of ${A^2}\& A$,
$
{A^3} = {A^2} \cdot A = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{4 \times 1 + 2 \times 1 + 1 \times 2}&{4 \times 1 + 2 \times 2 - 1 \times 1}&{4 \times 1 - 2 \times 3 + 1 \times 3} \\
{ - 3 \times 1 + 8 \times 1 - 14 \times 2}&{ - 3 \times 1 + 8 \times 2 + 14 \times 1}&{ - 3 \times 1 - 8 \times 3 - 14 \times 3} \\
{7 \times 1 - 3 \times 1 + 14 \times 2}&{7 \times 1 - 3 \times 2 - 14 \times 1}&{7 \times 1 + 3 \times 3 + 14 \times 3}
\end{array}} \right) \\
{A^3} = \left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) \\
$
Now substituting all the values in the equation ${A^3} - 6{A^2} + 5A + 11I = 0$, we get
$\left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{11}&0&0 \\
0&{11}&0 \\
0&0&{11}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now, from this we will find ${A^{ - 1}}$
$ - 11I = {A^3} - 6{A^2} + 5A$
Multiplying both side by ${A^{ - 1}}$ , we get
$ - 11{A^{ - 1}} = {A^2} - 6A + 5I\left( {\because A \cdot {A^{ - 1}} = I} \right)$
${A^{ - 1}} = \dfrac{{{A^2} - 6A + 5I}}{{ - 11}}$
Now , substitute the values of A and I , we get
$\therefore {A^{ - 1}} = \dfrac{{ - 1}}{{11}}\left( {\begin{array}{*{20}{c}}
3&{ - 4}&{ - 5} \\
{ - 9}&1&4 \\
{ - 5}&3&1
\end{array}} \right)$
Note: Two matrices can be multiplied if and only if the number of columns of the pre matrix is equal to the number of rows of the post matrix (AB, A is pre matrix, B is post matrix). Students must remember all the properties and identities related to matrices and determinants , As they are very important from an exam point of view as well as for faster calculations.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

