
For the matrix $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right)$, show that ${A^3} - 6{A^2} + 5A + 11I = 0$. Hence find ${A^{ - 1}}$.
Answer
580.5k+ views
Hint: Start by finding out the values of \[5A,{A^2}\& {A^3}\] by using the properties of matrix multiplication . Substitute these values in the given equation and find out ${A^{ - 1}}$ by rearranging the terms and using the identity $A \cdot {A^{ - 1}} = I$.
Complete step-by-step answer:
Given, $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right)$
Now, we need to show that the matrix A satisfies the equation
i.e. ${A^3} - 6{A^2} + 5A + 11I = 0$
Firstly, let us compute 5A
$5A = 5 \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right)$
Now, We know $A \cdot A = {A^2}$ and ${A^2} \cdot A = {A^3}$
Therefore , using the rule of multiplication of matrices i.e. Row by Column, we get
${A^2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}} \cdot {a_{11}} + {a_{12}} \cdot {a_{21}} + {a_{13}} \cdot {a_{31}}}&{{a_{11}} \cdot {a_{12}} + {a_{12}} \cdot {a_{22}} + {a_{13}} \cdot {a_{32}}}&{{a_{11}} \cdot {a_{13}} + {a_{12}} \cdot {a_{23}} + {a_{13}} \cdot {a_{33}}} \\
{{a_{21}} \cdot {a_{11}} + {a_{22}} \cdot {a_{21}} + {a_{23}} \cdot {a_{31}}}&{{a_{21}} \cdot {a_{12}} + {a_{22}} \cdot {a_{22}} + {a_{23}} \cdot {a_{32}}}&{{a_{21}} \cdot {a_{13}} + {a_{22}} \cdot {a_{23}} + {a_{23}} \cdot {a_{33}}} \\
{{a_{31}} \cdot {a_{11}} + {a_{32}} \cdot {a_{21}} + {a_{33}} \cdot {a_{31}}}&{{a_{31}} \cdot {a_{12}} + {a_{32}} \cdot {a_{22}} + {a_{33}} \cdot {a_{32}}}&{{a_{31}} \cdot {a_{13}} + {a_{32}} \cdot {a_{23}} + {a_{33}} \cdot {a_{33}}}
\end{array}} \right)$
Substituting the values , we get
${A^2} = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right)$
So , $6{A^2} = \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right)$
Now , similarly we will find ${A^3} = {A^2} \cdot A$
Substituting the values of ${A^2}\& A$,
$
{A^3} = {A^2} \cdot A = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{4 \times 1 + 2 \times 1 + 1 \times 2}&{4 \times 1 + 2 \times 2 - 1 \times 1}&{4 \times 1 - 2 \times 3 + 1 \times 3} \\
{ - 3 \times 1 + 8 \times 1 - 14 \times 2}&{ - 3 \times 1 + 8 \times 2 + 14 \times 1}&{ - 3 \times 1 - 8 \times 3 - 14 \times 3} \\
{7 \times 1 - 3 \times 1 + 14 \times 2}&{7 \times 1 - 3 \times 2 - 14 \times 1}&{7 \times 1 + 3 \times 3 + 14 \times 3}
\end{array}} \right) \\
{A^3} = \left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) \\
$
Now substituting all the values in the equation ${A^3} - 6{A^2} + 5A + 11I = 0$, we get
$\left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{11}&0&0 \\
0&{11}&0 \\
0&0&{11}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now, from this we will find ${A^{ - 1}}$
$ - 11I = {A^3} - 6{A^2} + 5A$
Multiplying both side by ${A^{ - 1}}$ , we get
$ - 11{A^{ - 1}} = {A^2} - 6A + 5I\left( {\because A \cdot {A^{ - 1}} = I} \right)$
${A^{ - 1}} = \dfrac{{{A^2} - 6A + 5I}}{{ - 11}}$
Now , substitute the values of A and I , we get
$\therefore {A^{ - 1}} = \dfrac{{ - 1}}{{11}}\left( {\begin{array}{*{20}{c}}
3&{ - 4}&{ - 5} \\
{ - 9}&1&4 \\
{ - 5}&3&1
\end{array}} \right)$
Note: Two matrices can be multiplied if and only if the number of columns of the pre matrix is equal to the number of rows of the post matrix (AB, A is pre matrix, B is post matrix). Students must remember all the properties and identities related to matrices and determinants , As they are very important from an exam point of view as well as for faster calculations.
Complete step-by-step answer:
Given, $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right)$
Now, we need to show that the matrix A satisfies the equation
i.e. ${A^3} - 6{A^2} + 5A + 11I = 0$
Firstly, let us compute 5A
$5A = 5 \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right)$
Now, We know $A \cdot A = {A^2}$ and ${A^2} \cdot A = {A^3}$
Therefore , using the rule of multiplication of matrices i.e. Row by Column, we get
${A^2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}} \cdot {a_{11}} + {a_{12}} \cdot {a_{21}} + {a_{13}} \cdot {a_{31}}}&{{a_{11}} \cdot {a_{12}} + {a_{12}} \cdot {a_{22}} + {a_{13}} \cdot {a_{32}}}&{{a_{11}} \cdot {a_{13}} + {a_{12}} \cdot {a_{23}} + {a_{13}} \cdot {a_{33}}} \\
{{a_{21}} \cdot {a_{11}} + {a_{22}} \cdot {a_{21}} + {a_{23}} \cdot {a_{31}}}&{{a_{21}} \cdot {a_{12}} + {a_{22}} \cdot {a_{22}} + {a_{23}} \cdot {a_{32}}}&{{a_{21}} \cdot {a_{13}} + {a_{22}} \cdot {a_{23}} + {a_{23}} \cdot {a_{33}}} \\
{{a_{31}} \cdot {a_{11}} + {a_{32}} \cdot {a_{21}} + {a_{33}} \cdot {a_{31}}}&{{a_{31}} \cdot {a_{12}} + {a_{32}} \cdot {a_{22}} + {a_{33}} \cdot {a_{32}}}&{{a_{31}} \cdot {a_{13}} + {a_{32}} \cdot {a_{23}} + {a_{33}} \cdot {a_{33}}}
\end{array}} \right)$
Substituting the values , we get
${A^2} = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right)$
So , $6{A^2} = \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right)$
Now , similarly we will find ${A^3} = {A^2} \cdot A$
Substituting the values of ${A^2}\& A$,
$
{A^3} = {A^2} \cdot A = \left( {\begin{array}{*{20}{c}}
4&2&1 \\
{ - 3}&8&{ - 14} \\
7&{ - 3}&{14}
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
1&1&1 \\
1&2&{ - 3} \\
2&{ - 1}&3
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{4 \times 1 + 2 \times 1 + 1 \times 2}&{4 \times 1 + 2 \times 2 - 1 \times 1}&{4 \times 1 - 2 \times 3 + 1 \times 3} \\
{ - 3 \times 1 + 8 \times 1 - 14 \times 2}&{ - 3 \times 1 + 8 \times 2 + 14 \times 1}&{ - 3 \times 1 - 8 \times 3 - 14 \times 3} \\
{7 \times 1 - 3 \times 1 + 14 \times 2}&{7 \times 1 - 3 \times 2 - 14 \times 1}&{7 \times 1 + 3 \times 3 + 14 \times 3}
\end{array}} \right) \\
{A^3} = \left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) \\
$
Now substituting all the values in the equation ${A^3} - 6{A^2} + 5A + 11I = 0$, we get
$\left( {\begin{array}{*{20}{c}}
8&7&1 \\
{ - 23}&{27}&{ - 69} \\
{32}&{ - 13}&{58}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{24}&{12}&6 \\
{ - 18}&{48}&{ - 84} \\
{42}&{ - 18}&{84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
5&5&5 \\
5&{10}&{ - 15} \\
{10}&{ - 5}&{15}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{11}&0&0 \\
0&{11}&0 \\
0&0&{11}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now, from this we will find ${A^{ - 1}}$
$ - 11I = {A^3} - 6{A^2} + 5A$
Multiplying both side by ${A^{ - 1}}$ , we get
$ - 11{A^{ - 1}} = {A^2} - 6A + 5I\left( {\because A \cdot {A^{ - 1}} = I} \right)$
${A^{ - 1}} = \dfrac{{{A^2} - 6A + 5I}}{{ - 11}}$
Now , substitute the values of A and I , we get
$\therefore {A^{ - 1}} = \dfrac{{ - 1}}{{11}}\left( {\begin{array}{*{20}{c}}
3&{ - 4}&{ - 5} \\
{ - 9}&1&4 \\
{ - 5}&3&1
\end{array}} \right)$
Note: Two matrices can be multiplied if and only if the number of columns of the pre matrix is equal to the number of rows of the post matrix (AB, A is pre matrix, B is post matrix). Students must remember all the properties and identities related to matrices and determinants , As they are very important from an exam point of view as well as for faster calculations.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

