
For the given function $ f\left( x \right) = {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} $ if $ x \ne a $ and $ f\left( x \right) = k $ if $ x = a $ and $ f\left( x \right) $ is continuous at $ x = a $ then $ k = $
(A) $ {e^{\tan a}} $
(B) \[{e^{\cot a}}\]
(C) $ {e^a} $
(D) $ {e^{1/a}} $
Answer
567.3k+ views
Hint: This question is based on Limits and Derivatives. The condition of the continuity of a function is that the limit of the function should exist. To solve this question, we have to arrange this expression in such a way that it satisfies the condition of the continuity and then substitute the limit value of the function and find the value of $ k $ .
Complete step-by-step answer:
Given:
$ f\left( x \right) = {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} $ if $ x \ne a $ and,
$ f\left( x \right) = k $ if $ x = a $
Also, it is given that $ f\left( x \right) $ is continuous at $ x = a $ . It means that-
$ \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = k $
If we substitute $ x = a $ in this equation we get,
$
f\left( a \right) = {\left( {\dfrac{{\sin a}}{{\sin a}}} \right)^{\dfrac{1}{{a - a}}}}\\
f\left( a \right) = {1^\infty }
$
We cannot solve this expression by simple substitution. So, we have to write this expression in such a way that it can be solved easily. Now we know that if any expression reduces to $ {1^\infty } $ form we can use this formula –
$ \mathop {\lim }\limits_{x \to a} {\left[ {f\left( x \right)} \right]^{g\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to a} g\left( x \right)\left[ {f\left( x \right) - 1} \right]}} $
So now, substituting the values into this formula we have –
$
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\mathop {\lim }\limits_{x \to a} \dfrac{1}{{x - a}}\left( {\dfrac{{\sin x}}{{\sin a}} - 1} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\mathop {\lim }\limits_{x \to a} \dfrac{1}{{x - a}}\left( {\dfrac{{\sin x - \sin a}}{{\sin a}}} \right)}}
$
We know the formula for $ \left( {\sin x - \sin a} \right) = 2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right) $
So, substituting this formula in the equation we get,
$
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{1}{{\sin a}}\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{x - a}}} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{1}{{\sin a}}\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{\left( {\dfrac{{x - a}}{2}} \right)}}} \right)}}
$
Now we know the rule that
$ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 $
So now we have to change the limit, then assume $ x - a = t{\rm{ (suppose)}} $
The limit $ x \to a $ changes to $ x - a \to 0 $ or $ t \to 0 $
Now we can apply this rule in the expression above. So, we have-
$
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{{\cos \left( {\dfrac{{a + a}}{2}} \right)}}{{\sin a}}\left( {\mathop {\lim }\limits_{t \to 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right)}}} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{{\cos a}}{{\sin a}}\left( {\mathop {\lim }\limits_{t \to 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right)}}} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\cot a \times 1}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\cot a}}
$
Therefore, the value of $ k $ is $ {e^{\cot a}} $
So, the correct answer is “Option B”.
Note: It should be noted that for a function to be continuous the limit of the function should exist and the value of the Right-hand limit should be equal to the Left-hand limit.
For example, if a function is continuous at point $ x = a $ then
$ \mathop {\lim }\limits_{x \to a} f\left( x \right) $ exists and
$ \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) $
Complete step-by-step answer:
Given:
$ f\left( x \right) = {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} $ if $ x \ne a $ and,
$ f\left( x \right) = k $ if $ x = a $
Also, it is given that $ f\left( x \right) $ is continuous at $ x = a $ . It means that-
$ \mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = k $
If we substitute $ x = a $ in this equation we get,
$
f\left( a \right) = {\left( {\dfrac{{\sin a}}{{\sin a}}} \right)^{\dfrac{1}{{a - a}}}}\\
f\left( a \right) = {1^\infty }
$
We cannot solve this expression by simple substitution. So, we have to write this expression in such a way that it can be solved easily. Now we know that if any expression reduces to $ {1^\infty } $ form we can use this formula –
$ \mathop {\lim }\limits_{x \to a} {\left[ {f\left( x \right)} \right]^{g\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to a} g\left( x \right)\left[ {f\left( x \right) - 1} \right]}} $
So now, substituting the values into this formula we have –
$
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\mathop {\lim }\limits_{x \to a} \dfrac{1}{{x - a}}\left( {\dfrac{{\sin x}}{{\sin a}} - 1} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\mathop {\lim }\limits_{x \to a} \dfrac{1}{{x - a}}\left( {\dfrac{{\sin x - \sin a}}{{\sin a}}} \right)}}
$
We know the formula for $ \left( {\sin x - \sin a} \right) = 2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right) $
So, substituting this formula in the equation we get,
$
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{1}{{\sin a}}\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{x - a}}} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{1}{{\sin a}}\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{\left( {\dfrac{{x - a}}{2}} \right)}}} \right)}}
$
Now we know the rule that
$ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 $
So now we have to change the limit, then assume $ x - a = t{\rm{ (suppose)}} $
The limit $ x \to a $ changes to $ x - a \to 0 $ or $ t \to 0 $
Now we can apply this rule in the expression above. So, we have-
$
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{{\cos \left( {\dfrac{{a + a}}{2}} \right)}}{{\sin a}}\left( {\mathop {\lim }\limits_{t \to 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right)}}} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\dfrac{{\cos a}}{{\sin a}}\left( {\mathop {\lim }\limits_{t \to 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right)}}} \right)}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\cot a \times 1}}\\
\mathop {\lim }\limits_{x \to a} {\left( {\dfrac{{\sin x}}{{\sin a}}} \right)^{\dfrac{1}{{x - a}}}} = {e^{\cot a}}
$
Therefore, the value of $ k $ is $ {e^{\cot a}} $
So, the correct answer is “Option B”.
Note: It should be noted that for a function to be continuous the limit of the function should exist and the value of the Right-hand limit should be equal to the Left-hand limit.
For example, if a function is continuous at point $ x = a $ then
$ \mathop {\lim }\limits_{x \to a} f\left( x \right) $ exists and
$ \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

