
For each real number x such that – 1 < x < 1, let A (x) be the matrix \[{{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[z=\dfrac{x+y}{1+xy},\] then,
\[\left( a \right)A\left( z \right)=A\left( x \right)+A\left( y \right)\]
\[\left( b \right)A\left( z \right)=A\left( x \right)+{{\left[ A\left( y \right) \right]}^{-1}}\]
\[\left( c \right)A\left( z \right)=A\left( x \right)A\left( y \right)\div \sqrt{1+xy}\]
\[\left( d \right)A\left( z \right)=A\left( x \right)-A\left( y \right)\]
Answer
580.2k+ views
Hint: To solve this question, we will first of all note the value of A(x) and then replace x by z to obtain A(z) other than A(x). Finally, we will open \[z=\dfrac{x+y}{1+xy}\] inside A(z) and then try to obtain \[A\left( x \right)={{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[A\left( y \right)={{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] inside to make the proper substitution.
Complete step by step answer:
We are given that \[A\left( x \right)={{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[z=\dfrac{x+y}{1+xy}.\] Also, - 1 < x < 1. Replacing x by z in A(x), we get,
\[A\left( z \right)={{\left( 1-z \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -z \\
-z & 1 \\
\end{matrix} \right]\]
Putting the value of \[z=\dfrac{x+y}{1+xy}\] in the above equation, we get,
\[\Rightarrow A\left( z \right)={{\left( 1-\left( \dfrac{x+y}{1+xy} \right) \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & \dfrac{-\left( x+y \right)}{\left( 1+xy \right)} \\
\dfrac{-\left( x+y \right)}{\left( 1+xy \right)} & 1 \\
\end{matrix} \right]\]
Taking \[\dfrac{1}{1+xy}\] common from the matrix in the RHS of the above equation, we have,
\[\Rightarrow A\left( z \right)={{\left( 1-\dfrac{x+y}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{1+xy}\left[ \begin{matrix}
1+xy & -x-y \\
-x-y & 1+xy \\
\end{matrix} \right]\]
Now splitting the matrix \[\left[ \begin{matrix}
1+xy & -x-y \\
-x-y & 1+xy \\
\end{matrix} \right]\] as \[\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right],\] we get,
\[\Rightarrow A\left( z \right)={{\left( 1-\dfrac{x+y}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{1+xy}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\]
Now solving the term \[{{\left( 1-\dfrac{x+y}{1+xy} \right)}^{\dfrac{-1}{2}}}\] we get,
\[\Rightarrow A\left( z \right)={{\left( \dfrac{1+xy-x-y}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{\left( 1+xy \right)}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\]
\[\Rightarrow A\left( z \right)={{\left( \dfrac{\left( 1-x \right)\left( 1-y \right)}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{\left( 1+xy \right)}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\]
Now because \[A\left( x \right)={{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[A\left( y \right)={{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right],\]then substituting this in the above, we get,
\[\Rightarrow A\left( z \right)=\dfrac{{{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]}{{{\left( 1+xy \right)}^{\dfrac{-1}{2}}}{{\left( 1+xy \right)}^{1}}}\]
\[\Rightarrow A\left( z \right)=\dfrac{{{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]}{{{\left( 1+xy \right)}^{\dfrac{1}{2}}}}\]
Using the value of A(x) and A(y), we get,
\[\Rightarrow A\left( z \right)=\dfrac{1}{{{\left( 1+xy \right)}^{\dfrac{1}{2}}}}A\left( x \right)A\left( y \right)\]
\[\Rightarrow A\left( z \right)=A\left( x \right)A\left( y \right)\div \sqrt{1+xy}\]
So, the correct answer is “Option C”.
Note: The possibility of the confusion in this question can be at the part where we have shifted \[\dfrac{\left[ \left( 1-x \right)\left( 1-y \right) \right]}{{{\left( 1+xy \right)}^{\dfrac{-1}{2}}}}\] as \[\left( \dfrac{1}{1+xy} \right)\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] to \[\dfrac{{{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]}{{{\left( 1+xy \right)}^{\dfrac{-1}{2}}}{{\left( 1+xy \right)}^{1}}}.\] It is not wring, it is correct as even if the matrix multiplication is not commutative then also separately \[\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] by a term \[{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\] works as \[{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\] is a scalar and not a matrix. Clearly, we have not changed the position of both the matrices using \[\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] and \[\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] with the change in order would be wrong.
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[A\left( y \right)={{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] inside to make the proper substitution.
Complete step by step answer:
We are given that \[A\left( x \right)={{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[z=\dfrac{x+y}{1+xy}.\] Also, - 1 < x < 1. Replacing x by z in A(x), we get,
\[A\left( z \right)={{\left( 1-z \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -z \\
-z & 1 \\
\end{matrix} \right]\]
Putting the value of \[z=\dfrac{x+y}{1+xy}\] in the above equation, we get,
\[\Rightarrow A\left( z \right)={{\left( 1-\left( \dfrac{x+y}{1+xy} \right) \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & \dfrac{-\left( x+y \right)}{\left( 1+xy \right)} \\
\dfrac{-\left( x+y \right)}{\left( 1+xy \right)} & 1 \\
\end{matrix} \right]\]
Taking \[\dfrac{1}{1+xy}\] common from the matrix in the RHS of the above equation, we have,
\[\Rightarrow A\left( z \right)={{\left( 1-\dfrac{x+y}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{1+xy}\left[ \begin{matrix}
1+xy & -x-y \\
-x-y & 1+xy \\
\end{matrix} \right]\]
Now splitting the matrix \[\left[ \begin{matrix}
1+xy & -x-y \\
-x-y & 1+xy \\
\end{matrix} \right]\] as \[\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right],\] we get,
\[\Rightarrow A\left( z \right)={{\left( 1-\dfrac{x+y}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{1+xy}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\]
Now solving the term \[{{\left( 1-\dfrac{x+y}{1+xy} \right)}^{\dfrac{-1}{2}}}\] we get,
\[\Rightarrow A\left( z \right)={{\left( \dfrac{1+xy-x-y}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{\left( 1+xy \right)}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\]
\[\Rightarrow A\left( z \right)={{\left( \dfrac{\left( 1-x \right)\left( 1-y \right)}{1+xy} \right)}^{\dfrac{-1}{2}}}\dfrac{1}{\left( 1+xy \right)}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\]
Now because \[A\left( x \right)={{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[A\left( y \right)={{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right],\]then substituting this in the above, we get,
\[\Rightarrow A\left( z \right)=\dfrac{{{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]}{{{\left( 1+xy \right)}^{\dfrac{-1}{2}}}{{\left( 1+xy \right)}^{1}}}\]
\[\Rightarrow A\left( z \right)=\dfrac{{{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]}{{{\left( 1+xy \right)}^{\dfrac{1}{2}}}}\]
Using the value of A(x) and A(y), we get,
\[\Rightarrow A\left( z \right)=\dfrac{1}{{{\left( 1+xy \right)}^{\dfrac{1}{2}}}}A\left( x \right)A\left( y \right)\]
\[\Rightarrow A\left( z \right)=A\left( x \right)A\left( y \right)\div \sqrt{1+xy}\]
So, the correct answer is “Option C”.
Note: The possibility of the confusion in this question can be at the part where we have shifted \[\dfrac{\left[ \left( 1-x \right)\left( 1-y \right) \right]}{{{\left( 1+xy \right)}^{\dfrac{-1}{2}}}}\] as \[\left( \dfrac{1}{1+xy} \right)\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] to \[\dfrac{{{\left( 1-x \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]}{{{\left( 1+xy \right)}^{\dfrac{-1}{2}}}{{\left( 1+xy \right)}^{1}}}.\] It is not wring, it is correct as even if the matrix multiplication is not commutative then also separately \[\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] and \[\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] by a term \[{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\] works as \[{{\left( 1-y \right)}^{\dfrac{-1}{2}}}\] is a scalar and not a matrix. Clearly, we have not changed the position of both the matrices using \[\left[ \begin{matrix}
1 & -y \\
-y & 1 \\
\end{matrix} \right]\] and \[\left[ \begin{matrix}
1 & -x \\
-x & 1 \\
\end{matrix} \right]\] with the change in order would be wrong.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

