
For \[(ax + b){e^{\left( {\dfrac{y}{x}} \right)}} = x\] . Find $\dfrac{{{d^2}y}}{{d{x^2}}}$
Answer
558k+ views
Hint: In this question, we need to evaluate the value of $\dfrac{{{d^2}y}}{{d{x^2}}}$. For this, we will apply logarithm on both sides of the equation. Express y in terms of x. Then find $\dfrac{{dy}}{{dx}}$. Take the derivative of $\dfrac{{dy}}{{dx}}$ to get the answer.
Complete step by step solution:
We are given that \[(ax + b){e^{\left( {\dfrac{y}{x}} \right)}} = x\].
We need to find the second derivative.
This equation can also be written as \[{e^{\left( {\dfrac{y}{x}} \right)}} = \dfrac{x}{{(ax + b)}}\]
To simplify this equation, we will apply logarithm on both sides.
Thus, we get
\[\log {e^{\left( {\dfrac{y}{x}} \right)}} = \log (\dfrac{x}{{ax + b}})\]
We know that $\log {b^a} = a\log b$.
Therefore,
\[\dfrac{y}{x}\log e = \log (\dfrac{x}{{ax + b}})\]
Now, $\log e = 1$.
Thus, we get
\[
\dfrac{y}{x} = \log (\dfrac{x}{{ax + b}}) \\
\Rightarrow y = x\log (\dfrac{x}{{ax + b}})......(1) \;
\]
Differentiating both sides of (1) with respect to x, we get
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x\log (\dfrac{x}{{ax + b}}))\]
The product rule of derivatives is as follows:
If $y = u \times v$, then $\dfrac{{dy}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$.
Applying the product rule, we get
\[\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) + \log (\dfrac{x}{{ax + b}})\dfrac{d}{{dx}}(x)\]
We know that \[\dfrac{d}{{dx}}(x) = 1\] .
\[ \Rightarrow \dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) + \log (\dfrac{x}{{ax + b}})......(2)\]
Also, $\log \dfrac{a}{b} = \log a - \log b$.
Therefore, \[\log (\dfrac{x}{{ax + b}}) = \log x - \log (ax + b)\] .
This implies that
\[
\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) \\
= \dfrac{d}{{dx}}(\log x - \log (ax + b)) \\
= \dfrac{d}{{dx}}(\log x) - \dfrac{d}{{dx}}(\log (ax + b)) \;
\]
We know that \[\log (ax + b) = \dfrac{a}{{ax + b}}\] and $\log x = \dfrac{1}{x}$.
Therefore, we get \[\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) = \dfrac{1}{x} - \dfrac{a}{{ax + b}}.....(3)\] .
On combining, (2) and (3), we have
\[\dfrac{{dy}}{{dx}} = x(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + \log (\dfrac{x}{{ax + b}})\]
Multiplying $x$on both the sides, we get
\[x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + x\log (\dfrac{x}{{ax + b}})\]
Using (1), we have
\[
x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + y \\
\Rightarrow x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{b}{{x(ax + b)}}) + y = \dfrac{{bx}}{{(ax + b)}} + y......(4) \;
\]
We will again differentiate (4) with respect to x.
\[
x\dfrac{{{d^2}y}}{{d{x^2}}} + \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) + \dfrac{{dy}}{{dx}} \\
\Rightarrow x\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) \;
\]
The quotient rule of derivatives is as follows:
If $y = \dfrac{u}{v}$, then $\dfrac{{dy}}{{dx}} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$.
On applying the quotient rule, we get
\[
x\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) \\
= \dfrac{{(ax + b)\dfrac{{d(bx)}}{{dx}} - bx\dfrac{{d(ax + b)}}{{dx}}}}{{{{(ax + b)}^2}}} \\
= \dfrac{{b(ax + b) - abx}}{{{{(ax + b)}^2}}} \\
= \dfrac{{abx + {b^2} - abx}}{{{{(ax + b)}^2}}} \\
= \dfrac{{{b^2}}}{{{{(ax + b)}^2}}} \;
\]
Thus, \[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{x} \times \dfrac{{{b^2}}}{{{{(ax + b)}^2}}} = \dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}\]
Hence, the required answer is \[\dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}\] .
So, the correct answer is “$\dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}$”.
Note: In any equation related to derivatives which contains $e$, the first approach should be applying logarithm to eliminate $e$. This will simplify the equation. Only then proceed with the differentiation part like we did in the above question.
Complete step by step solution:
We are given that \[(ax + b){e^{\left( {\dfrac{y}{x}} \right)}} = x\].
We need to find the second derivative.
This equation can also be written as \[{e^{\left( {\dfrac{y}{x}} \right)}} = \dfrac{x}{{(ax + b)}}\]
To simplify this equation, we will apply logarithm on both sides.
Thus, we get
\[\log {e^{\left( {\dfrac{y}{x}} \right)}} = \log (\dfrac{x}{{ax + b}})\]
We know that $\log {b^a} = a\log b$.
Therefore,
\[\dfrac{y}{x}\log e = \log (\dfrac{x}{{ax + b}})\]
Now, $\log e = 1$.
Thus, we get
\[
\dfrac{y}{x} = \log (\dfrac{x}{{ax + b}}) \\
\Rightarrow y = x\log (\dfrac{x}{{ax + b}})......(1) \;
\]
Differentiating both sides of (1) with respect to x, we get
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x\log (\dfrac{x}{{ax + b}}))\]
The product rule of derivatives is as follows:
If $y = u \times v$, then $\dfrac{{dy}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$.
Applying the product rule, we get
\[\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) + \log (\dfrac{x}{{ax + b}})\dfrac{d}{{dx}}(x)\]
We know that \[\dfrac{d}{{dx}}(x) = 1\] .
\[ \Rightarrow \dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) + \log (\dfrac{x}{{ax + b}})......(2)\]
Also, $\log \dfrac{a}{b} = \log a - \log b$.
Therefore, \[\log (\dfrac{x}{{ax + b}}) = \log x - \log (ax + b)\] .
This implies that
\[
\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) \\
= \dfrac{d}{{dx}}(\log x - \log (ax + b)) \\
= \dfrac{d}{{dx}}(\log x) - \dfrac{d}{{dx}}(\log (ax + b)) \;
\]
We know that \[\log (ax + b) = \dfrac{a}{{ax + b}}\] and $\log x = \dfrac{1}{x}$.
Therefore, we get \[\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) = \dfrac{1}{x} - \dfrac{a}{{ax + b}}.....(3)\] .
On combining, (2) and (3), we have
\[\dfrac{{dy}}{{dx}} = x(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + \log (\dfrac{x}{{ax + b}})\]
Multiplying $x$on both the sides, we get
\[x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + x\log (\dfrac{x}{{ax + b}})\]
Using (1), we have
\[
x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + y \\
\Rightarrow x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{b}{{x(ax + b)}}) + y = \dfrac{{bx}}{{(ax + b)}} + y......(4) \;
\]
We will again differentiate (4) with respect to x.
\[
x\dfrac{{{d^2}y}}{{d{x^2}}} + \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) + \dfrac{{dy}}{{dx}} \\
\Rightarrow x\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) \;
\]
The quotient rule of derivatives is as follows:
If $y = \dfrac{u}{v}$, then $\dfrac{{dy}}{{dx}} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$.
On applying the quotient rule, we get
\[
x\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) \\
= \dfrac{{(ax + b)\dfrac{{d(bx)}}{{dx}} - bx\dfrac{{d(ax + b)}}{{dx}}}}{{{{(ax + b)}^2}}} \\
= \dfrac{{b(ax + b) - abx}}{{{{(ax + b)}^2}}} \\
= \dfrac{{abx + {b^2} - abx}}{{{{(ax + b)}^2}}} \\
= \dfrac{{{b^2}}}{{{{(ax + b)}^2}}} \;
\]
Thus, \[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{x} \times \dfrac{{{b^2}}}{{{{(ax + b)}^2}}} = \dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}\]
Hence, the required answer is \[\dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}\] .
So, the correct answer is “$\dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}$”.
Note: In any equation related to derivatives which contains $e$, the first approach should be applying logarithm to eliminate $e$. This will simplify the equation. Only then proceed with the differentiation part like we did in the above question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

