
For any non-zero, non collinear vectors \[\overrightarrow p \] and \[\overrightarrow q \] the value of \[[\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k\] is
A.\[0\]
B.\[2(\overrightarrow p \times \overrightarrow q )\]
C.\[\overrightarrow q \times \overrightarrow p \]
D.\[\overrightarrow p \times \overrightarrow q \]
Answer
587.4k+ views
Hint:Here we use the concept that both the given vectors are non collinear and non-zero so the cross product of the two vectors will not be zero. Assume the values of magnitude in the vectors as different variables and perform cross product of the two vectors. Then multiply each term with the given directions to find the sum.
Formula used:Cross product of two vectors \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k,\overrightarrow b = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\]is given by solving the determinant \[\left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{x_1}}&{{y_1}}&{{z_1}} \\
{{x_2}}&{{y_2}}&{{z_2}}
\end{array}} \right| = ({y_1}{z_2} - {y_2}{z_1})\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k\]
* Dot product of two vectors \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k,\overrightarrow b = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\]is given as \[\overrightarrow a \bullet \overrightarrow b = ({x_1}\hat i + {y_1}\hat j + {z_1}\hat k)({x_2}\hat i + {y_2}\hat j + {z_2}\hat k)\]
\[\overrightarrow a \bullet \overrightarrow b = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\]
* The product\[\hat i.\hat i = \hat j.\hat j = \hat k.\hat k = 1\]
* Two vectors are said to be collinear if their cross product is zero vector and one vector can be written as multiple of another vector.
Complete step-by-step answer:
We have to find the value of \[[\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k ………...… (1)\]
Let us assume two vectors \[\overrightarrow p = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\] and \[\overrightarrow q = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\]
Then using the method of cross product of two vectors we can write
\[ \Rightarrow \overrightarrow p \times \overrightarrow q = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{x_1}}&{{y_1}}&{{z_1}} \\
{{x_2}}&{{y_2}}&{{z_2}}
\end{array}} \right|\]
Solve the determinant to obtain the vector
\[ \Rightarrow \overrightarrow p \times \overrightarrow q = ({y_1}{z_2} - {y_2}{z_1})\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k\]
We know that the \[\hat i.\hat i = 1,\hat j.\hat j = 1,\hat k.\hat k = 1\]and \[\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0\]
Take the dot product of the vector \[\overrightarrow p \times \overrightarrow q \] with each vector \[\hat i,\hat j,\hat k\] separately.
\[ \Rightarrow \hat i \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1})\hat i.\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j.\hat i + ({x_1}{y_2} - {x_2}{y_1})\hat k.\hat i\]
\[ \Rightarrow \hat i \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1}) ……………...… (2)\]
\[ \Rightarrow \hat j \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1})\hat i.\hat j - ({x_1}{z_2} - {x_2}{z_1})\hat j.\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k.\hat j\]
\[ \Rightarrow \hat j \bullet (\overrightarrow p \times \overrightarrow q ) = - ({x_1}{z_2} - {x_2}{z_1}) ………..… (3)\]
\[ \Rightarrow \hat k \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1})\hat i.\hat k - ({x_1}{z_2} - {x_2}{z_1})\hat j.\hat k + ({x_1}{y_2} - {x_2}{y_1})\hat k.\hat k\]
\[ \Rightarrow \hat k \bullet (\overrightarrow p \times \overrightarrow q ) = ({x_1}{y_2} - {x_2}{y_1}) …………..… (4)\]
Substitute the values from equation (2) in equation (1)
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = [{y_1}{z_2} - {y_2}{z_1}]\hat i + [ - ({x_1}{z_2} - {x_2}{z_1})]\hat j + [{x_1}{y_2} - {x_2}{y_1}]\hat k\]
Since, \[\overrightarrow p \times \overrightarrow q = ({y_1}{z_2} - {y_2}{z_1})\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k\]
Substitute the value of RHS as \[\overrightarrow p \times \overrightarrow q \]
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = \overrightarrow p \times \overrightarrow q \]
So, the correct answer is “Option D”.
Note:Students might make the mistake of multiplying the directions directly by bringing the directions out of the bracket.
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = [\overrightarrow p \overrightarrow q ]\hat i.\hat i + [\overrightarrow p \overrightarrow q ]\hat j.\hat j + [\overrightarrow p \overrightarrow q ]\hat k.\hat k\]
Use \[\hat i.\hat i = \hat j.\hat j = \hat k.\hat k = 1\]
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = [\overrightarrow p \overrightarrow q ] + [\overrightarrow p \overrightarrow q ] + [\overrightarrow p \overrightarrow q ]\]
Add the same terms in RHS to get the value
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = 3[\overrightarrow p \overrightarrow q ]\]
This is a wrong procedure. Keep in mind that the direction that is given with the vectors \[\overrightarrow p \overrightarrow q \]is to be multiplied within the bracket first and after obtaining the final value of the bracket we can multiply it to the value outside the bracket.
Formula used:Cross product of two vectors \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k,\overrightarrow b = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\]is given by solving the determinant \[\left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{x_1}}&{{y_1}}&{{z_1}} \\
{{x_2}}&{{y_2}}&{{z_2}}
\end{array}} \right| = ({y_1}{z_2} - {y_2}{z_1})\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k\]
* Dot product of two vectors \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k,\overrightarrow b = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\]is given as \[\overrightarrow a \bullet \overrightarrow b = ({x_1}\hat i + {y_1}\hat j + {z_1}\hat k)({x_2}\hat i + {y_2}\hat j + {z_2}\hat k)\]
\[\overrightarrow a \bullet \overrightarrow b = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\]
* The product\[\hat i.\hat i = \hat j.\hat j = \hat k.\hat k = 1\]
* Two vectors are said to be collinear if their cross product is zero vector and one vector can be written as multiple of another vector.
Complete step-by-step answer:
We have to find the value of \[[\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k ………...… (1)\]
Let us assume two vectors \[\overrightarrow p = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\] and \[\overrightarrow q = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\]
Then using the method of cross product of two vectors we can write
\[ \Rightarrow \overrightarrow p \times \overrightarrow q = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{x_1}}&{{y_1}}&{{z_1}} \\
{{x_2}}&{{y_2}}&{{z_2}}
\end{array}} \right|\]
Solve the determinant to obtain the vector
\[ \Rightarrow \overrightarrow p \times \overrightarrow q = ({y_1}{z_2} - {y_2}{z_1})\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k\]
We know that the \[\hat i.\hat i = 1,\hat j.\hat j = 1,\hat k.\hat k = 1\]and \[\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0\]
Take the dot product of the vector \[\overrightarrow p \times \overrightarrow q \] with each vector \[\hat i,\hat j,\hat k\] separately.
\[ \Rightarrow \hat i \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1})\hat i.\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j.\hat i + ({x_1}{y_2} - {x_2}{y_1})\hat k.\hat i\]
\[ \Rightarrow \hat i \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1}) ……………...… (2)\]
\[ \Rightarrow \hat j \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1})\hat i.\hat j - ({x_1}{z_2} - {x_2}{z_1})\hat j.\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k.\hat j\]
\[ \Rightarrow \hat j \bullet (\overrightarrow p \times \overrightarrow q ) = - ({x_1}{z_2} - {x_2}{z_1}) ………..… (3)\]
\[ \Rightarrow \hat k \bullet (\overrightarrow p \times \overrightarrow q ) = ({y_1}{z_2} - {y_2}{z_1})\hat i.\hat k - ({x_1}{z_2} - {x_2}{z_1})\hat j.\hat k + ({x_1}{y_2} - {x_2}{y_1})\hat k.\hat k\]
\[ \Rightarrow \hat k \bullet (\overrightarrow p \times \overrightarrow q ) = ({x_1}{y_2} - {x_2}{y_1}) …………..… (4)\]
Substitute the values from equation (2) in equation (1)
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = [{y_1}{z_2} - {y_2}{z_1}]\hat i + [ - ({x_1}{z_2} - {x_2}{z_1})]\hat j + [{x_1}{y_2} - {x_2}{y_1}]\hat k\]
Since, \[\overrightarrow p \times \overrightarrow q = ({y_1}{z_2} - {y_2}{z_1})\hat i - ({x_1}{z_2} - {x_2}{z_1})\hat j + ({x_1}{y_2} - {x_2}{y_1})\hat k\]
Substitute the value of RHS as \[\overrightarrow p \times \overrightarrow q \]
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = \overrightarrow p \times \overrightarrow q \]
So, the correct answer is “Option D”.
Note:Students might make the mistake of multiplying the directions directly by bringing the directions out of the bracket.
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = [\overrightarrow p \overrightarrow q ]\hat i.\hat i + [\overrightarrow p \overrightarrow q ]\hat j.\hat j + [\overrightarrow p \overrightarrow q ]\hat k.\hat k\]
Use \[\hat i.\hat i = \hat j.\hat j = \hat k.\hat k = 1\]
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = [\overrightarrow p \overrightarrow q ] + [\overrightarrow p \overrightarrow q ] + [\overrightarrow p \overrightarrow q ]\]
Add the same terms in RHS to get the value
\[ \Rightarrow [\hat i\overrightarrow p \overrightarrow q ]\hat i + [\hat j\overrightarrow p \overrightarrow q ]\hat j + [\hat k\overrightarrow p \overrightarrow q ]\hat k = 3[\overrightarrow p \overrightarrow q ]\]
This is a wrong procedure. Keep in mind that the direction that is given with the vectors \[\overrightarrow p \overrightarrow q \]is to be multiplied within the bracket first and after obtaining the final value of the bracket we can multiply it to the value outside the bracket.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

