
For anionic hydrolysis, pH is given by?
A.$pH\quad =\quad 1/2pK_{ w }=1/2pK_{ b }-1/2logC$
B.$pH\quad =\quad 1/2pK_{ x }+1/2pK_{ a }-1/2logC$
C.$pH\quad =\quad 1/2pK_{ w }+1/2pK_{ a }+1/2logC$
D.None of the above
Answer
587.1k+ views
Hint: You will get an idea from the definition of salt hydrolysis. It is defined as a reaction in which cation or anion or both of a salt react with water to produce acidity or alkalinity. Now try to find an answer accordingly for anionic hydrolysis.
Complete step by step answer:
Anionic hydrolysis - Salts of weak acids and strong bases undergo anionic hydrolysis and yield a basic solution. In anionic hydrolysis, the solution becomes slightly basic (pH >7)
Now, we will derive a general equation of pH of anionic hydrolysis.
A general hydrolysis reaction for a salt of a weak acid (HA) and strong base can be written as,
\[A^{ - }\quad \quad \quad \quad \quad +\quad \quad \quad \quad H_{ 2 }O\quad \quad \quad \quad \quad \rightleftharpoons \quad \quad \quad \quad HA\quad \quad \quad \quad \quad +\quad \quad \quad \quad OH^{ - }\]
C(1-x) Cx Cx
Thus, $OH^{ - }$ ion concentration increases, the solution becomes alkaline.
Applying law of mass action,
${ K }_{ h }$ = [HA][$OH^{ - }$]/[$A^{ - }$] = (Cx×Cx)/C(1-x) = (${ Cx }^{ 2 }$)/(1-x) …………(i)
Other equations present in the solution are,
\[HA\quad \rightleftharpoons \quad A^{ - }\quad +\quad H^{ + }\],
${ K }_{ a }$ = [$A^{ - }$][$H^{ + }$]/[HA] ...... (ii)
\[H_{ 2 }O\quad \rightleftharpoons \quad H^{ + }\quad +\quad OH^{ - }\],
${ K }_{ w }$ = [$H^{ + }$][$OH^{ - }$] ....... (iii)
From eqs. (ii) and (iii) we can conclude that,
$log[OH^{ - }]\quad =\quad logK_{ w }-logK_{ a }+log[salt]/[acid]$
$-pOH\quad =\quad -pK_{ w }+pK_{ a }+log[salt]/[acid]$
$pK_{ w }-pOH\quad =\quad pK_{ a }+log[salt]/[acid]$
Considering eq. (i) again we can write,
$K_{ x }=Cx^{ 2 }/(1-x)$ or $K_{ h }=Ch^{ 2 }/(1-h)$
When h is very small, (1-h) $\rightarrow$ 1
or $h^{ 2 }=K_{ h }/C$
or $h=\sqrt { K_{ h }/C }$
[$OH^{ - }$] = h × C = $h=\sqrt { K_{ h }C }$ = $h=\sqrt { C\times { K }_{ w }/{ K }_{ a } }$
$[H^{ + }]\quad =\quad K_{ w }/[OH^{ - }]\quad =\quad K_{ w }/\sqrt { (CK_{ w }/K_{ a }) } =\sqrt { (K_{ a }K_{ w })/K_{ c } } $
$-log[H^{ + }]=-1/2logK_{ w }-1/2logK_{ a }+1/2logC$
$pH\quad =\quad 1/2pK_{ w }+1/2pK_{ a }+1/2logC$
This is the equation for pH in anionic hydrolysis.
Therefore, the correct answer to this question is C.
Note: In chemistry, pH is a scale used to specify how acidic or basic a water-based solution is. Acidic solutions have a lower pH, while basic solutions have a higher pH.
pH for cationic hydrolysis is given by,
$pH\quad =\quad 1/2pK_{ w }-1/2pK_{ b }-1/2logC$
Complete step by step answer:
Anionic hydrolysis - Salts of weak acids and strong bases undergo anionic hydrolysis and yield a basic solution. In anionic hydrolysis, the solution becomes slightly basic (pH >7)
Now, we will derive a general equation of pH of anionic hydrolysis.
A general hydrolysis reaction for a salt of a weak acid (HA) and strong base can be written as,
\[A^{ - }\quad \quad \quad \quad \quad +\quad \quad \quad \quad H_{ 2 }O\quad \quad \quad \quad \quad \rightleftharpoons \quad \quad \quad \quad HA\quad \quad \quad \quad \quad +\quad \quad \quad \quad OH^{ - }\]
C(1-x) Cx Cx
Thus, $OH^{ - }$ ion concentration increases, the solution becomes alkaline.
Applying law of mass action,
${ K }_{ h }$ = [HA][$OH^{ - }$]/[$A^{ - }$] = (Cx×Cx)/C(1-x) = (${ Cx }^{ 2 }$)/(1-x) …………(i)
Other equations present in the solution are,
\[HA\quad \rightleftharpoons \quad A^{ - }\quad +\quad H^{ + }\],
${ K }_{ a }$ = [$A^{ - }$][$H^{ + }$]/[HA] ...... (ii)
\[H_{ 2 }O\quad \rightleftharpoons \quad H^{ + }\quad +\quad OH^{ - }\],
${ K }_{ w }$ = [$H^{ + }$][$OH^{ - }$] ....... (iii)
From eqs. (ii) and (iii) we can conclude that,
$log[OH^{ - }]\quad =\quad logK_{ w }-logK_{ a }+log[salt]/[acid]$
$-pOH\quad =\quad -pK_{ w }+pK_{ a }+log[salt]/[acid]$
$pK_{ w }-pOH\quad =\quad pK_{ a }+log[salt]/[acid]$
Considering eq. (i) again we can write,
$K_{ x }=Cx^{ 2 }/(1-x)$ or $K_{ h }=Ch^{ 2 }/(1-h)$
When h is very small, (1-h) $\rightarrow$ 1
or $h^{ 2 }=K_{ h }/C$
or $h=\sqrt { K_{ h }/C }$
[$OH^{ - }$] = h × C = $h=\sqrt { K_{ h }C }$ = $h=\sqrt { C\times { K }_{ w }/{ K }_{ a } }$
$[H^{ + }]\quad =\quad K_{ w }/[OH^{ - }]\quad =\quad K_{ w }/\sqrt { (CK_{ w }/K_{ a }) } =\sqrt { (K_{ a }K_{ w })/K_{ c } } $
$-log[H^{ + }]=-1/2logK_{ w }-1/2logK_{ a }+1/2logC$
$pH\quad =\quad 1/2pK_{ w }+1/2pK_{ a }+1/2logC$
This is the equation for pH in anionic hydrolysis.
Therefore, the correct answer to this question is C.
Note: In chemistry, pH is a scale used to specify how acidic or basic a water-based solution is. Acidic solutions have a lower pH, while basic solutions have a higher pH.
pH for cationic hydrolysis is given by,
$pH\quad =\quad 1/2pK_{ w }-1/2pK_{ b }-1/2logC$
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Sketch the electric field lines in case of an electric class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Mention any two factors on which the capacitance of class 12 physics CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

a Draw Labelled diagram of Standard Hydrogen Electrode class 12 chemistry CBSE

