
For an ideal binary liquid solution with ${{\text{P}}_{\text{A}}}^0 > {{\text{P}}_{\text{B}}}^0$ which relation between ${{\text{X}}_{\text{A}}}$ (mole fraction of A in liquid phase) and ${{\text{Y}}_{\text{A}}}$ (mole fraction of A in vapour phase) is correct, ${{\text{X}}_{\text{B}}}$ and ${{\text{Y}}_{\text{B}}}$ are mole fraction of B in liquid and vapour phase respectively:
A.${{\text{X}}_{\text{A}}}{\text{ = }}{{\text{Y}}_{\text{A}}}$
B.${{\text{X}}_{\text{A}}}{\text{ > }}{{\text{Y}}_{\text{A}}}$
C.$\dfrac{{{{\text{X}}_{\text{A}}}}}{{{{\text{X}}_{\text{B}}}}} < \dfrac{{{{\text{Y}}_{\text{A}}}}}{{{{\text{Y}}_{\text{B}}}}}$
D.${{\text{X}}_{\text{A}}}$, ${{\text{Y}}_{\text{A}}}$, ${{\text{X}}_{\text{B}}}$ and ${{\text{Y}}_{\text{B}}}$ cannot be correlated
Answer
557.1k+ views
Hint: An ideal solution is that solution in which each component obeys Raoult’s law under all conditions of temperatures and concentrations.
In general, for a solution containing a number of volatile components (liquids), for any component ‘I’,
${{\text{P}}_{\text{i}}}{\text{ = }}{{\text{Y}}_{\text{i}}}{{ \times }}{{\text{P}}_{{\text{Total}}}}$
Here, ${{\text{P}}_{\text{i}}}$ is partial vapor pressure of the component ‘i’, ${{\text{Y}}_{\text{i}}}$ is the mole fraction of the component ‘i’ in the vapor phase and ${{\text{P}}_{{\text{Total}}}}$ is the total pressure of the system.
Complete step by step answer:
According to Raoult’s law for volatile solutes, i.e., for liquid – liquid solutions, the vapour pressure of a component at a given temperature in a solution is equal to the product of the mole fraction of that component in the solution and the vapor pressure of that component in the pure state.
According to the question, A and B are two completely miscible volatile liquids having mole fractions ${{\text{X}}_{\text{A}}}$ and ${{\text{X}}_{\text{B}}}$ respectively in the liquid phase. Their partial vapor pressures are ${{\text{P}}_{\text{A}}}$ and ${{\text{P}}_{\text{B}}}$ respectively. Also, ${{\text{P}}_{\text{A}}}^0$ and ${{\text{P}}_{\text{B}}}^0$ are the vapor pressures of A and B respectively in the pure state. Then, according to Raoult’s law,
${{\text{P}}_{\text{A}}} = {{\text{X}}_{\text{A}}} \times {{\text{P}}_{\text{A}}}^0$
And ${{\text{P}}_{\text{B}}} = {{\text{X}}_{\text{B}}} \times {{\text{P}}_{\text{B}}}^0$
Thus, ${{\text{P}}_{\text{A}}}^0 = \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{X}}_{\text{A}}}}}$
And ${{\text{P}}_{\text{B}}}^0 = \dfrac{{{{\text{P}}_{\text{B}}}}}{{{{\text{X}}_{\text{B}}}}}$
According to the question, ${{\text{P}}_{\text{A}}}^0 > {{\text{P}}_{\text{B}}}^0$, thus,
$\dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{X}}_{\text{A}}}}} > \dfrac{{{{\text{P}}_{\text{B}}}}}{{{{\text{X}}_{\text{B}}}}}$
Rearrange the relation to get:
$
\dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} > \dfrac{{{{\text{X}}_{\text{A}}}}}{{{{\text{X}}_{\text{B}}}}} \\
\Rightarrow \dfrac{{{{\text{X}}_{\text{A}}}}}{{{{\text{X}}_{\text{B}}}}} < \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} \to 1 \\
$
The composition of the vapour phase in equilibrium with the solution can be calculated from the partial pressures of the two components in the vapor phase. By question, ${{\text{Y}}_{\text{A}}}$ is the mole fraction of A in vapour phase and ${{\text{Y}}_{\text{B}}}$ is the mole fraction of B in vapour phase. If ${{\text{P}}_{{\text{Total}}}}$ is the total pressure of the system, then:
${{\text{Y}}_{\text{A}}} = \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{{\text{Total}}}}}}$
And ${{\text{Y}}_{\text{B}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{B}}}}}{{{{\text{P}}_{{\text{Total}}}}}}$
Thus,
$
\dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} = \dfrac{{\dfrac{{{{\text{Y}}_{\text{A}}}}}{{{{\text{P}}_{{\text{Total}}}}}}}}{{\dfrac{{{{\text{Y}}_{\text{B}}}}}{{{{\text{P}}_{{\text{Total}}}}}}}} \\
\Rightarrow \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} = \dfrac{{{{\text{Y}}_{\text{A}}}}}{{{{\text{Y}}_{\text{B}}}}} \to 2 \\
$
Combining the equation 1 and the equation 2, we get:
$\dfrac{{{{\text{X}}_{\text{A}}}}}{{{{\text{X}}_{\text{B}}}}} < \dfrac{{{{\text{Y}}_{\text{A}}}}}{{{{\text{Y}}_{\text{B}}}}}$
Therefore, option C is correct.
Note:
The Raoult’s law is applicable only if the two components form a solution (a homogeneous mixture). It is not applicable if the two liquids are not completely miscible. Liquid pairs that are ideal solutions are benzene plus toluene, hexane plus heptanes etc. Depending upon the vapor pressures of the pure components, total vapor pressure over the solution may increase or decrease with increase in the mole fraction of a component.
In general, for a solution containing a number of volatile components (liquids), for any component ‘I’,
${{\text{P}}_{\text{i}}}{\text{ = }}{{\text{Y}}_{\text{i}}}{{ \times }}{{\text{P}}_{{\text{Total}}}}$
Here, ${{\text{P}}_{\text{i}}}$ is partial vapor pressure of the component ‘i’, ${{\text{Y}}_{\text{i}}}$ is the mole fraction of the component ‘i’ in the vapor phase and ${{\text{P}}_{{\text{Total}}}}$ is the total pressure of the system.
Complete step by step answer:
According to Raoult’s law for volatile solutes, i.e., for liquid – liquid solutions, the vapour pressure of a component at a given temperature in a solution is equal to the product of the mole fraction of that component in the solution and the vapor pressure of that component in the pure state.
According to the question, A and B are two completely miscible volatile liquids having mole fractions ${{\text{X}}_{\text{A}}}$ and ${{\text{X}}_{\text{B}}}$ respectively in the liquid phase. Their partial vapor pressures are ${{\text{P}}_{\text{A}}}$ and ${{\text{P}}_{\text{B}}}$ respectively. Also, ${{\text{P}}_{\text{A}}}^0$ and ${{\text{P}}_{\text{B}}}^0$ are the vapor pressures of A and B respectively in the pure state. Then, according to Raoult’s law,
${{\text{P}}_{\text{A}}} = {{\text{X}}_{\text{A}}} \times {{\text{P}}_{\text{A}}}^0$
And ${{\text{P}}_{\text{B}}} = {{\text{X}}_{\text{B}}} \times {{\text{P}}_{\text{B}}}^0$
Thus, ${{\text{P}}_{\text{A}}}^0 = \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{X}}_{\text{A}}}}}$
And ${{\text{P}}_{\text{B}}}^0 = \dfrac{{{{\text{P}}_{\text{B}}}}}{{{{\text{X}}_{\text{B}}}}}$
According to the question, ${{\text{P}}_{\text{A}}}^0 > {{\text{P}}_{\text{B}}}^0$, thus,
$\dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{X}}_{\text{A}}}}} > \dfrac{{{{\text{P}}_{\text{B}}}}}{{{{\text{X}}_{\text{B}}}}}$
Rearrange the relation to get:
$
\dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} > \dfrac{{{{\text{X}}_{\text{A}}}}}{{{{\text{X}}_{\text{B}}}}} \\
\Rightarrow \dfrac{{{{\text{X}}_{\text{A}}}}}{{{{\text{X}}_{\text{B}}}}} < \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} \to 1 \\
$
The composition of the vapour phase in equilibrium with the solution can be calculated from the partial pressures of the two components in the vapor phase. By question, ${{\text{Y}}_{\text{A}}}$ is the mole fraction of A in vapour phase and ${{\text{Y}}_{\text{B}}}$ is the mole fraction of B in vapour phase. If ${{\text{P}}_{{\text{Total}}}}$ is the total pressure of the system, then:
${{\text{Y}}_{\text{A}}} = \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{{\text{Total}}}}}}$
And ${{\text{Y}}_{\text{B}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{B}}}}}{{{{\text{P}}_{{\text{Total}}}}}}$
Thus,
$
\dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} = \dfrac{{\dfrac{{{{\text{Y}}_{\text{A}}}}}{{{{\text{P}}_{{\text{Total}}}}}}}}{{\dfrac{{{{\text{Y}}_{\text{B}}}}}{{{{\text{P}}_{{\text{Total}}}}}}}} \\
\Rightarrow \dfrac{{{{\text{P}}_{\text{A}}}}}{{{{\text{P}}_{\text{B}}}}} = \dfrac{{{{\text{Y}}_{\text{A}}}}}{{{{\text{Y}}_{\text{B}}}}} \to 2 \\
$
Combining the equation 1 and the equation 2, we get:
$\dfrac{{{{\text{X}}_{\text{A}}}}}{{{{\text{X}}_{\text{B}}}}} < \dfrac{{{{\text{Y}}_{\text{A}}}}}{{{{\text{Y}}_{\text{B}}}}}$
Therefore, option C is correct.
Note:
The Raoult’s law is applicable only if the two components form a solution (a homogeneous mixture). It is not applicable if the two liquids are not completely miscible. Liquid pairs that are ideal solutions are benzene plus toluene, hexane plus heptanes etc. Depending upon the vapor pressures of the pure components, total vapor pressure over the solution may increase or decrease with increase in the mole fraction of a component.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

