
For a ray of light refracting from medium $1$ to medium $2$ with plane interface, if unit vectors in the direction of incident ray, normal and the refracted ray are represented by ${\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1}$,$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $and${\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2}$respectively, and the angles of incidence and refraction by${\theta _1}$and ${\theta _2}$respectively, then the Snell’s law for refraction at the interface can be written in vector form as
A.${\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} - {\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = \left( {{\mu _1}\cos {\theta _1} - {\mu _2}\cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $
B.${\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} - {\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = \left( {{\mu _2}\sin {\theta _2} - {\mu _1}\sin {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $
C.${\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} - {\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = \left( {{\mu _2}\cos {\theta _2} - {\mu _1}\cos {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $
D.${\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} - {\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} = \left( {{\mu _2}\sin {\theta _2} - {\mu _1}\sin {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $
Answer
529.2k+ views
Hint: To answer this question, we first need to write the Snell’s law for refraction in the form of a vector cross product. Then, manipulating the expression with the help of the vector triple product, we will get the final result.
Formula Used:
${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$, here ${\mu _1}$and\[{\mu _2}\]are the refractive indices of the medium$1$ and the medium$2$respectively, and \[{\theta _1}\]and \[{\theta _2}\]are the angles made by the ray of light with the normal in the respective mediums.
Complete answer:
The situation is shown in the figure below.
Applying Snell’s law at the interface, we have
${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$
We know from trigonometry, that $\sin \theta = \sin \left( {{{180}^ \circ } - \theta } \right)$
So, the Snell’s law can also be written as
${\mu _1}\sin \left( {{{180}^ \circ } - {\theta _1}} \right) = {\mu _2}\sin \left( {{{180}^ \circ } - {\theta _2}} \right)$ (1)
Now, we can see from the above figure that the angle between the unit vectors ${\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1}$and $\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $ is equal to${180^ \circ } - {\theta _1}$
So, we have \[{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = 1 \times 1 \times \sin \left( {{{180}^ \circ } - {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \]
\[{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = \sin \left( {{{180}^ \circ } - {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \] (2)
Similarly, we have
\[{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = \sin \left( {{{180}^ \circ } - {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \] (3)
Here \[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \]is the unit vector perpendicular to the plane of the paper.
Substituting (2) and (3) in (1), we get
\[{\mu _1}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\]
Now, we take the cross product of the unit vector $\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $ with both the sides
\[{\mu _1}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \times \left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)} \right) = {\mu _2}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \times \left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)} \right)\]
Writing the values of the vector triple products on both sides
\[{\mu _1}\left( {\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right){{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} - \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right){{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} - \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\] (4)
We have \[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = 1 \times 1 = 1\]
Also,
\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = 1 \times 1 \times \cos \left( {{{180}^ \circ } - {\theta _1}} \right)\]
\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = - \cos {\theta _1}\]
Similarly
\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} = - \cos {\theta _2}\]
Putting these values in (4), we get
\[{\mu _1}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} - \left( { - \cos {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} - \left( { - \cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\]
\[{\mu _1}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} + \left( {\cos {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} + \left( {\cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\]
On multiplying, we get
\[{\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} + {\mu _1}\left( {\cos {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = {\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} + {\mu _2}\left( {\cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \]
On rearranging the terms, we get
\[{\mu _1}\cos {\theta _1}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} - {\mu _2}\cos {\theta _2}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = {\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} - {\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1}\]
Taking $\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $as common, we finally get
\[{\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} - {\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = \left( {{\mu _1}\cos {\theta _1} - {\mu _2}\cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \]
Hence, the correct answer is option A.
Note:
We used the vector triple product in this question just to manipulate our answer in the same form as the options were given. The idea is simple, as the vector triple product involves subtraction of the vectors, the form in which the options are given, so we used this method.
Formula Used:
${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$, here ${\mu _1}$and\[{\mu _2}\]are the refractive indices of the medium$1$ and the medium$2$respectively, and \[{\theta _1}\]and \[{\theta _2}\]are the angles made by the ray of light with the normal in the respective mediums.
Complete answer:
The situation is shown in the figure below.
Applying Snell’s law at the interface, we have
${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$
We know from trigonometry, that $\sin \theta = \sin \left( {{{180}^ \circ } - \theta } \right)$
So, the Snell’s law can also be written as
${\mu _1}\sin \left( {{{180}^ \circ } - {\theta _1}} \right) = {\mu _2}\sin \left( {{{180}^ \circ } - {\theta _2}} \right)$ (1)
Now, we can see from the above figure that the angle between the unit vectors ${\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1}$and $\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $ is equal to${180^ \circ } - {\theta _1}$
So, we have \[{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = 1 \times 1 \times \sin \left( {{{180}^ \circ } - {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \]
\[{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = \sin \left( {{{180}^ \circ } - {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \] (2)
Similarly, we have
\[{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = \sin \left( {{{180}^ \circ } - {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \] (3)
Here \[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c} \]is the unit vector perpendicular to the plane of the paper.
Substituting (2) and (3) in (1), we get
\[{\mu _1}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\]
Now, we take the cross product of the unit vector $\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $ with both the sides
\[{\mu _1}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \times \left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)} \right) = {\mu _2}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \times \left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)} \right)\]
Writing the values of the vector triple products on both sides
\[{\mu _1}\left( {\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right){{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} - \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right){{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} - \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\] (4)
We have \[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = 1 \times 1 = 1\]
Also,
\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = 1 \times 1 \times \cos \left( {{{180}^ \circ } - {\theta _1}} \right)\]
\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = - \cos {\theta _1}\]
Similarly
\[\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \cdot {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} = - \cos {\theta _2}\]
Putting these values in (4), we get
\[{\mu _1}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} - \left( { - \cos {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} - \left( { - \cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\]
\[{\mu _1}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_1} + \left( {\cos {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right) = {\mu _2}\left( {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} }_2} + \left( {\cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} } \right)\]
On multiplying, we get
\[{\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} + {\mu _1}\left( {\cos {\theta _1}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = {\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} + {\mu _2}\left( {\cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \]
On rearranging the terms, we get
\[{\mu _1}\cos {\theta _1}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} - {\mu _2}\cos {\theta _2}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} = {\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} - {\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1}\]
Taking $\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} $as common, we finally get
\[{\mu _2}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _2} - {\mu _1}{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} _1} = \left( {{\mu _1}\cos {\theta _1} - {\mu _2}\cos {\theta _2}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \]
Hence, the correct answer is option A.
Note:
We used the vector triple product in this question just to manipulate our answer in the same form as the options were given. The idea is simple, as the vector triple product involves subtraction of the vectors, the form in which the options are given, so we used this method.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

