
For a matrix $A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right]$ verify $A\left( {{\text{adj }}A} \right) = \left( {{\text{adj }}A} \right)A = \left| A \right|I$.
Answer
568.8k+ views
Hint: First find the cofactor matrix of A. Determine the cofactors of all elements of matrix A. Then transpose the cofactor matrix to get the adjoint of matrix A, i.e. ${\text{adj}}A$. Multiply the adjoint matrix with A in different order and find the determinant value of A to prove the above result.
Complete step-by-step solution:
According to the question, the given matrix is $A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right]$.
To determine the adjoint of the matrix, first we have to find out the cofactors of all of its elements. Let the cofactors are denoted by $a$ then we have:
Cofactors of first row elements:
\[{a_{1,1}} = \left| {\begin{array}{*{20}{c}}
0&2 \\
0&3
\end{array}} \right| = 0\], \[{a_{1,2}} = - \left| {\begin{array}{*{20}{c}}
3&2 \\
1&3
\end{array}} \right| = - 7\] and \[{a_{1,3}} = \left| {\begin{array}{*{20}{c}}
3&0 \\
1&0
\end{array}} \right| = 0\]
Co-factors of second row elements:
\[{a_{2,1}} = - \left| {\begin{array}{*{20}{c}}
1&2 \\
0&3
\end{array}} \right| = - 3\], \[{a_{2,2}} = \left| {\begin{array}{*{20}{c}}
1&2 \\
1&3
\end{array}} \right| = 1\] and \[{a_{2,3}} = - \left| {\begin{array}{*{20}{c}}
1&1 \\
1&0
\end{array}} \right| = 1\]
Co-factors of third row elements:
\[{a_{3,1}} = \left| {\begin{array}{*{20}{c}}
1&2 \\
0&2
\end{array}} \right| = 2\], \[{a_{3,2}} = - \left| {\begin{array}{*{20}{c}}
1&2 \\
3&2
\end{array}} \right| = 4\] and \[{a_{3,3}} = \left| {\begin{array}{*{20}{c}}
1&1 \\
3&0
\end{array}} \right| = - 3\]
Thus the cofactor matrix is obtained by putting the co-factors in a matrix in order. So we have the cofactor matrix as:
$ \Rightarrow {C_A} = \left[ {\begin{array}{*{20}{c}}
0&{ - 7}&0 \\
{ - 3}&1&1 \\
2&4&{ - 3}
\end{array}} \right]$
We know from definition that the adjoint of a matrix is the transpose of its cofactor matrix. So we have the adjoint of matrix A as:
$ \Rightarrow {\text{adj}}A = \left[ {\begin{array}{*{20}{c}}
0&{ - 3}&2 \\
{ - 7}&1&4 \\
0&1&{ - 3}
\end{array}} \right]$
To get the value of matrix $A\left( {{\text{adj }}A} \right)$, we will multiply the two matrices, we’ll get:
\[
\Rightarrow A\left( {{\text{adj }}A} \right) = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
0&{ - 3}&2 \\
{ - 7}&1&4 \\
0&1&{ - 3}
\end{array}} \right] \\
\Rightarrow A\left( {{\text{adj }}A} \right) = \left[ {\begin{array}{*{20}{c}}
{0 - 7 + 0}&{ - 3 + 1 + 2}&{2 + 4 - 6} \\
{0 - 0 + 0}&{ - 9 + 0 + 2}&{6 + 0 - 6} \\
{0 - 0 + 0}&{ - 3 + 0 + 3}&{2 + 0 - 9}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 7}&0&0 \\
0&{ - 7}&0 \\
0&0&{ - 7}
\end{array}} \right] \\
\Rightarrow A\left( {{\text{adj }}A} \right) = - 7\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]{\text{ }}.....{\text{(1)}} \\
\]
Similarly to determine the matrix $\left( {{\text{adj }}A} \right)A$, we’ll multiply the matrices in opposite order. We’ll get:
$
\Rightarrow \left( {{\text{adj }}A} \right)A = \left[ {\begin{array}{*{20}{c}}
0&{ - 3}&2 \\
{ - 7}&1&4 \\
0&1&{ - 3}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right] \\
\Rightarrow \left( {{\text{adj }}A} \right)A = \left[ {\begin{array}{*{20}{c}}
{0 - 9 + 2}&{0 - 0 + 0}&{0 - 6 + 6} \\
{ - 7 + 3 + 4}&{ - 7 + 0 + 0}&{ - 14 + 2 + 12} \\
{0 + 3 - 3}&{0 + 0 - 0}&{0 + 2 - 9}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 7}&0&0 \\
0&{ - 7}&0 \\
0&0&{ - 7}
\end{array}} \right] \\
\Rightarrow \left( {{\text{adj }}A} \right)A = - 7\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]{\text{ }}.....{\text{(2)}} \\
$
Further, the determinant value of matrix A is given as:
$
\Rightarrow \left| A \right| = 1\left( {0 - 0} \right) - 1\left( {9 - 2} \right) + 2\left( {0 - 0} \right) \\
\Rightarrow \left| A \right| = 0 - 7 + 0 = - 7 \\
$
So the value of matrix $\left| A \right|I$ is:
$ \Rightarrow \left| A \right|I - 7\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]{\text{ }}.....{\text{(3)}}$
Here $I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$ is the identity matrix of order $3 \times 3$.
Now, comparing equations (1), (2) and (3), we can observe that:
$ \Rightarrow A\left( {{\text{adj }}A} \right) = \left( {{\text{adj }}A} \right)A = \left| A \right|I$
Note: This adjoint method is also used to determine the inverse of any matrix. The formula to determine the inverse of any matrix A is given as:
$ \Rightarrow {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {{\text{adj}}A} \right)$
Thus when all the elements of the adjoint matrix are divided by the determinant value of the original matrix, we get the inverse matrix.
Complete step-by-step solution:
According to the question, the given matrix is $A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right]$.
To determine the adjoint of the matrix, first we have to find out the cofactors of all of its elements. Let the cofactors are denoted by $a$ then we have:
Cofactors of first row elements:
\[{a_{1,1}} = \left| {\begin{array}{*{20}{c}}
0&2 \\
0&3
\end{array}} \right| = 0\], \[{a_{1,2}} = - \left| {\begin{array}{*{20}{c}}
3&2 \\
1&3
\end{array}} \right| = - 7\] and \[{a_{1,3}} = \left| {\begin{array}{*{20}{c}}
3&0 \\
1&0
\end{array}} \right| = 0\]
Co-factors of second row elements:
\[{a_{2,1}} = - \left| {\begin{array}{*{20}{c}}
1&2 \\
0&3
\end{array}} \right| = - 3\], \[{a_{2,2}} = \left| {\begin{array}{*{20}{c}}
1&2 \\
1&3
\end{array}} \right| = 1\] and \[{a_{2,3}} = - \left| {\begin{array}{*{20}{c}}
1&1 \\
1&0
\end{array}} \right| = 1\]
Co-factors of third row elements:
\[{a_{3,1}} = \left| {\begin{array}{*{20}{c}}
1&2 \\
0&2
\end{array}} \right| = 2\], \[{a_{3,2}} = - \left| {\begin{array}{*{20}{c}}
1&2 \\
3&2
\end{array}} \right| = 4\] and \[{a_{3,3}} = \left| {\begin{array}{*{20}{c}}
1&1 \\
3&0
\end{array}} \right| = - 3\]
Thus the cofactor matrix is obtained by putting the co-factors in a matrix in order. So we have the cofactor matrix as:
$ \Rightarrow {C_A} = \left[ {\begin{array}{*{20}{c}}
0&{ - 7}&0 \\
{ - 3}&1&1 \\
2&4&{ - 3}
\end{array}} \right]$
We know from definition that the adjoint of a matrix is the transpose of its cofactor matrix. So we have the adjoint of matrix A as:
$ \Rightarrow {\text{adj}}A = \left[ {\begin{array}{*{20}{c}}
0&{ - 3}&2 \\
{ - 7}&1&4 \\
0&1&{ - 3}
\end{array}} \right]$
To get the value of matrix $A\left( {{\text{adj }}A} \right)$, we will multiply the two matrices, we’ll get:
\[
\Rightarrow A\left( {{\text{adj }}A} \right) = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
0&{ - 3}&2 \\
{ - 7}&1&4 \\
0&1&{ - 3}
\end{array}} \right] \\
\Rightarrow A\left( {{\text{adj }}A} \right) = \left[ {\begin{array}{*{20}{c}}
{0 - 7 + 0}&{ - 3 + 1 + 2}&{2 + 4 - 6} \\
{0 - 0 + 0}&{ - 9 + 0 + 2}&{6 + 0 - 6} \\
{0 - 0 + 0}&{ - 3 + 0 + 3}&{2 + 0 - 9}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 7}&0&0 \\
0&{ - 7}&0 \\
0&0&{ - 7}
\end{array}} \right] \\
\Rightarrow A\left( {{\text{adj }}A} \right) = - 7\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]{\text{ }}.....{\text{(1)}} \\
\]
Similarly to determine the matrix $\left( {{\text{adj }}A} \right)A$, we’ll multiply the matrices in opposite order. We’ll get:
$
\Rightarrow \left( {{\text{adj }}A} \right)A = \left[ {\begin{array}{*{20}{c}}
0&{ - 3}&2 \\
{ - 7}&1&4 \\
0&1&{ - 3}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right] \\
\Rightarrow \left( {{\text{adj }}A} \right)A = \left[ {\begin{array}{*{20}{c}}
{0 - 9 + 2}&{0 - 0 + 0}&{0 - 6 + 6} \\
{ - 7 + 3 + 4}&{ - 7 + 0 + 0}&{ - 14 + 2 + 12} \\
{0 + 3 - 3}&{0 + 0 - 0}&{0 + 2 - 9}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 7}&0&0 \\
0&{ - 7}&0 \\
0&0&{ - 7}
\end{array}} \right] \\
\Rightarrow \left( {{\text{adj }}A} \right)A = - 7\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]{\text{ }}.....{\text{(2)}} \\
$
Further, the determinant value of matrix A is given as:
$
\Rightarrow \left| A \right| = 1\left( {0 - 0} \right) - 1\left( {9 - 2} \right) + 2\left( {0 - 0} \right) \\
\Rightarrow \left| A \right| = 0 - 7 + 0 = - 7 \\
$
So the value of matrix $\left| A \right|I$ is:
$ \Rightarrow \left| A \right|I - 7\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]{\text{ }}.....{\text{(3)}}$
Here $I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$ is the identity matrix of order $3 \times 3$.
Now, comparing equations (1), (2) and (3), we can observe that:
$ \Rightarrow A\left( {{\text{adj }}A} \right) = \left( {{\text{adj }}A} \right)A = \left| A \right|I$
Note: This adjoint method is also used to determine the inverse of any matrix. The formula to determine the inverse of any matrix A is given as:
$ \Rightarrow {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {{\text{adj}}A} \right)$
Thus when all the elements of the adjoint matrix are divided by the determinant value of the original matrix, we get the inverse matrix.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

