Answer
Verified
436.2k+ views
Hint:We know that the ideal gas law is the condition of a speculative ideal gas. It is a decent estimation of the conduct of numerous gases under numerous conditions, despite the fact that it has a few impediments
The ideal gas equation is,
$PV = nRT$
Where P is the pressure in the atmosphere.
V is the volume of gas in a liter.
n is the number of moles.
R is a universal gas constant.
T is the temperature.
Complete step by step answer:
Given,
The number of moles $n = 10$.
The pressure of gas is $0.821atm$.
The value of gas constant is $0.0821Latmmo{l^{ - 1}}{K^{ - 1}}$.
We know the ideal gas equation is,
$PV = nRT$
Now, substitute the known qualities in the above condition,
$V = \dfrac{{10 \times 0.0821 \times T}}{{0.821}}$
$V = 1 \times T$
$\dfrac{{\log V}}{{\log T}} = 1$
$\tan \theta = 1$
$\tan {45^ \circ } = 1$
Hence option A is correct.
Additional information:
If the gas obeys an ideal gas equation then the pressure is given by,
${\text{P = }}\dfrac{{{\text{nRT}}}}{{\text{V}}} \to 1$
If the volume is doubled and the temperature is halved then the equation becomes,
${\text{P = }}\dfrac{{{\text{nRT/2}}}}{{{\text{2V}}}}$
${\text{P = }}\dfrac{{{\text{nRT}}}}{{{\text{4V}}}} \to 2$
From equation 1 ${\text{P = }}\dfrac{{{\text{nRT}}}}{{\text{V}}}$ then the equation 2 becomes,
${\text{P = }}\dfrac{{\text{P}}}{{\text{4}}}$
Thus, if the volume is doubled and the temperature is halved then the pressure of the system decreases by four times.
Note:
We know that,
${\text{Density}}{\text{ = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$
Assuming mass is equal to the number of moles in ideal gas.
${\text{Density = }}\dfrac{{\text{n}}}{{{\text{volume}}}}$
The ideal gas equation is,
${\text{PV = nRT}}$
The number of moles can be calculated as,
${\text{n = }}\dfrac{{{\text{PV}}}}{{{\text{RT}}}}$
Substituting the value of n in density equation,
\[{\text{Density = }}\dfrac{{P\not V}}{{RT\not V}}\]
\[{\text{Density = }}\dfrac{{\text{P}}}{{{\text{RT}}}}\]
\[{\text{Density}} \propto \dfrac{{\text{1}}}{{\text{T}}}\]
It is clear that density is inversely proportional to temperature. Thus, as the density of the gas decreases temperature increases.
The ideal gas equation is,
$PV = nRT$
Where P is the pressure in the atmosphere.
V is the volume of gas in a liter.
n is the number of moles.
R is a universal gas constant.
T is the temperature.
Complete step by step answer:
Given,
The number of moles $n = 10$.
The pressure of gas is $0.821atm$.
The value of gas constant is $0.0821Latmmo{l^{ - 1}}{K^{ - 1}}$.
We know the ideal gas equation is,
$PV = nRT$
Now, substitute the known qualities in the above condition,
$V = \dfrac{{10 \times 0.0821 \times T}}{{0.821}}$
$V = 1 \times T$
$\dfrac{{\log V}}{{\log T}} = 1$
$\tan \theta = 1$
$\tan {45^ \circ } = 1$
Hence option A is correct.
Additional information:
If the gas obeys an ideal gas equation then the pressure is given by,
${\text{P = }}\dfrac{{{\text{nRT}}}}{{\text{V}}} \to 1$
If the volume is doubled and the temperature is halved then the equation becomes,
${\text{P = }}\dfrac{{{\text{nRT/2}}}}{{{\text{2V}}}}$
${\text{P = }}\dfrac{{{\text{nRT}}}}{{{\text{4V}}}} \to 2$
From equation 1 ${\text{P = }}\dfrac{{{\text{nRT}}}}{{\text{V}}}$ then the equation 2 becomes,
${\text{P = }}\dfrac{{\text{P}}}{{\text{4}}}$
Thus, if the volume is doubled and the temperature is halved then the pressure of the system decreases by four times.
Note:
We know that,
${\text{Density}}{\text{ = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$
Assuming mass is equal to the number of moles in ideal gas.
${\text{Density = }}\dfrac{{\text{n}}}{{{\text{volume}}}}$
The ideal gas equation is,
${\text{PV = nRT}}$
The number of moles can be calculated as,
${\text{n = }}\dfrac{{{\text{PV}}}}{{{\text{RT}}}}$
Substituting the value of n in density equation,
\[{\text{Density = }}\dfrac{{P\not V}}{{RT\not V}}\]
\[{\text{Density = }}\dfrac{{\text{P}}}{{{\text{RT}}}}\]
\[{\text{Density}} \propto \dfrac{{\text{1}}}{{\text{T}}}\]
It is clear that density is inversely proportional to temperature. Thus, as the density of the gas decreases temperature increases.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE