Answer
Verified
411.3k+ views
Hint: Nodal surface is the region where the probability of finding an electron is zero.
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius
r-distance from the nucleus
Complete step by step answer:
As we know that Node is the region where the probability of finding an electron is zero. Nodes have two types as radial and angular nodes. Angular node is the plane that contains the x-,y- and z-axis where its probability of finding an electron is zero. Angular nodes can be identified by their azimuthal quantum number. For s-orbital there are no angular nodes since its azimuthal quantum number is 0.
The nodal surface which is radial nodes can be calculated by the formula \[n - l - 1\]
Where,
n-principal quantum number. For 2s orbital, \[n = 2\]
l- azimuthal quantum number. For s-orbital, \[l = 0\]
thus, the number of radial nodes for 2s-subshell\[ = 2 - 0 - 1 \Rightarrow 1\]
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius(distance)
r-distance from the nucleus
At the nodal surface,\[\varphi (2s) = 0\]. So when \[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\], then the whole wave function for 2s- subshell becomes zero.
Thus, for 2s-subshell,
\[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\]
\[ \Rightarrow 2 = \dfrac{r}{{{a_0}}}\]
\[ \Rightarrow r = 2{a_0}\]
Thus, for 2s orbital, the nodal surface is at a distance of \[2{a_0}\] from the nucleus.
So, the correct answer is Option C.
Note: At the nodal surface, the wave function will become zero since electron density is zero on the nodal surface. The radial node is the spherical surface at which the probability of finding an electron is zero.
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius
r-distance from the nucleus
Complete step by step answer:
As we know that Node is the region where the probability of finding an electron is zero. Nodes have two types as radial and angular nodes. Angular node is the plane that contains the x-,y- and z-axis where its probability of finding an electron is zero. Angular nodes can be identified by their azimuthal quantum number. For s-orbital there are no angular nodes since its azimuthal quantum number is 0.
The nodal surface which is radial nodes can be calculated by the formula \[n - l - 1\]
Where,
n-principal quantum number. For 2s orbital, \[n = 2\]
l- azimuthal quantum number. For s-orbital, \[l = 0\]
thus, the number of radial nodes for 2s-subshell\[ = 2 - 0 - 1 \Rightarrow 1\]
Schrodinger wave function for 2s- subshell can be represented as,
\[\varphi (2s) = \dfrac{1}{{4\sqrt {2\pi } a_0^{\dfrac{3}{2}}}}\left( {2 - \dfrac{r}{{{a_0}}}} \right){e^{\left( {\dfrac{{ - r}}{{2{a_0}}}} \right)}}\]
Where,
\[\varphi \]-wave function
\[{a_0}\]-Bohr radius(distance)
r-distance from the nucleus
At the nodal surface,\[\varphi (2s) = 0\]. So when \[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\], then the whole wave function for 2s- subshell becomes zero.
Thus, for 2s-subshell,
\[\left( {2 - \dfrac{r}{{{a_0}}}} \right) = 0\]
\[ \Rightarrow 2 = \dfrac{r}{{{a_0}}}\]
\[ \Rightarrow r = 2{a_0}\]
Thus, for 2s orbital, the nodal surface is at a distance of \[2{a_0}\] from the nucleus.
So, the correct answer is Option C.
Note: At the nodal surface, the wave function will become zero since electron density is zero on the nodal surface. The radial node is the spherical surface at which the probability of finding an electron is zero.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations