
Find whether the following function is differentiable at \[x = 1,2\] .
\[f\left( x \right) = \left\{
x \\
2 - x \\
- 2 + 3x - {x^2} \\
\right.\] \[
, \\
, \\
, \\
\] \[
x \leqslant 1 \\
1 \leqslant x \leqslant 2 \\
x > 2 \\
\]
Answer
585k+ views
Hint: First of all, the given function is continuous for all \[x < 1\] , \[1 < x < 2\] and \[x > 2\] , because it is a polynomial function. Now, for a function to be differentiable at any value of x, the L.H.D. (Left Hand side Derivative) must be equal to the R.H.D. (Right Hand side Derivative). So, find the L.H.D. and R.H.D. individually at the values of \[x = 1,2\] , and see whether L.H.D = R.H.D.
Complete step-by-step answer:
We have
\[f\left( x \right) = \left\{
x \\
2 - x \\
- 2 + 3x - {x^2} \\
\right.\] \[
, \\
, \\
, \\
\] \[
x \leqslant 1 \\
1 \leqslant x \leqslant 2 \\
x > 2 \\
\]
It is clear that, given function is continuous for all \[x < 1\] , \[1 < x < 2\] and \[x > 2\] , because it is a polynomial function. So, the points where the function may be non-differentiable are at the values of \[x = 1\] and \[x = 2\] .
For a function to be differentiable at any value of \[x\], the Left Hand side Derivative (L.H.D.) must be equal to the Right Hand side Derivative (R.H.D.). So, we will check L.H.D. and R.H.D. individually at the values of \[x = 1\] and \[x = 2\] .
Now,
\[f\left( 1 \right) = 2 - 1 = 1\] (at \[x = 1\] )
And
\[f\left( 2 \right) = 2 - 2 = 0\] (at \[x = 2\] )
At \[x = 1\] ,
L.H.D. \[ = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\]
\[
= \mathop {\lim }\limits_{x \to 1} \dfrac{{x - 1}}{{x - 1}} \\
= 1 \\
\]
R.H.D. \[ = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\]
\[
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2 - x} \right) - 1}}{{x - 1}} \\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( {x - 1} \right)}}{{x - 1}} \\
= - 1 \\
\]
\[\therefore \]L.H.D \[ \ne \] R.H.D.
Thus, the given function is not differentiable at \[x = 1\] .
At \[x = 2\] ,
L.H.D. \[ = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}}\]
\[
= \mathop {\lim }\limits_{x \to 2} \dfrac{{2 - x - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {x - 2} \right)}}{{x - 2}} \\
= - 1 \\
\]
R.H.D. \[ = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}}\]
\[
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( { - 2 + 3x - {x^2}} \right) - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {{x^2} - 3x + 2} \right) - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} - \left( {x - 1} \right) \\
= - 1 \\
\]
\[\therefore \]L.H.D. \[ = \] R.H.D.
Thus, the given function is differentiable at \[x = 2\] .
Note: Every polynomial equation is always continuous everywhere on \[\left( { - \infty ,\infty } \right)\] .
A function can be differentiable at a particular given point if and only if the Left Hand side Derivative (L.H.D.) and the Right Hand side Derivative (R.H.D.) co-exist and are equal.
Complete step-by-step answer:
We have
\[f\left( x \right) = \left\{
x \\
2 - x \\
- 2 + 3x - {x^2} \\
\right.\] \[
, \\
, \\
, \\
\] \[
x \leqslant 1 \\
1 \leqslant x \leqslant 2 \\
x > 2 \\
\]
It is clear that, given function is continuous for all \[x < 1\] , \[1 < x < 2\] and \[x > 2\] , because it is a polynomial function. So, the points where the function may be non-differentiable are at the values of \[x = 1\] and \[x = 2\] .
For a function to be differentiable at any value of \[x\], the Left Hand side Derivative (L.H.D.) must be equal to the Right Hand side Derivative (R.H.D.). So, we will check L.H.D. and R.H.D. individually at the values of \[x = 1\] and \[x = 2\] .
Now,
\[f\left( 1 \right) = 2 - 1 = 1\] (at \[x = 1\] )
And
\[f\left( 2 \right) = 2 - 2 = 0\] (at \[x = 2\] )
At \[x = 1\] ,
L.H.D. \[ = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\]
\[
= \mathop {\lim }\limits_{x \to 1} \dfrac{{x - 1}}{{x - 1}} \\
= 1 \\
\]
R.H.D. \[ = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\]
\[
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2 - x} \right) - 1}}{{x - 1}} \\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( {x - 1} \right)}}{{x - 1}} \\
= - 1 \\
\]
\[\therefore \]L.H.D \[ \ne \] R.H.D.
Thus, the given function is not differentiable at \[x = 1\] .
At \[x = 2\] ,
L.H.D. \[ = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}}\]
\[
= \mathop {\lim }\limits_{x \to 2} \dfrac{{2 - x - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {x - 2} \right)}}{{x - 2}} \\
= - 1 \\
\]
R.H.D. \[ = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}}\]
\[
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( { - 2 + 3x - {x^2}} \right) - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {{x^2} - 3x + 2} \right) - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} - \left( {x - 1} \right) \\
= - 1 \\
\]
\[\therefore \]L.H.D. \[ = \] R.H.D.
Thus, the given function is differentiable at \[x = 2\] .
Note: Every polynomial equation is always continuous everywhere on \[\left( { - \infty ,\infty } \right)\] .
A function can be differentiable at a particular given point if and only if the Left Hand side Derivative (L.H.D.) and the Right Hand side Derivative (R.H.D.) co-exist and are equal.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

