
How do you find \[u=\dfrac{1}{2}v-w+2z\] and given that \[v=\ <4,-3,5>,\ w=\ <2,6,-1>\] and \[z=<3,0,4>\]?
Answer
546.6k+ views
Hint: In the given question, we have been asked to find the value of a given expression and we have given three vectors i.e. \[v=\ <4,-3,5>,\ w=\ <2,6,-1>\] and \[z=<3,0,4>\]. In the given each vector we have three components that represent ‘x’, ‘y’ and ‘z’ directions. So for adding the vectors first we need to add only the values of x-direction and then we add the values of y-direction and then adding the values of z-direction and then write it in the given vector form that is in the question. For subtracting the two vectors, we need to subtract the values of x-direction then subtract the values of y-direction and same with the values of z-direction then write it in the vector form. To multiply a scalar unit by vector, we need to multiply each component of the vector by that scalar unit. Later we will simplify the given expression and we will get our required solution.
Complete step by step answer:
We have given three vectors,
\[\overrightarrow{v}=\ <4,-3,5>\ i.e.\ \overrightarrow{v}=\left( \begin{matrix}
4 \\
-3 \\
5 \\
\end{matrix} \right)\]
\[\Rightarrow\overrightarrow{w}=\ <2,6,-1>\ i.e.\ \overrightarrow{w}=\left( \begin{matrix}
2 \\
6 \\
-1 \\
\end{matrix} \right)\]
\[\Rightarrow\overrightarrow{z}=<3,0,4>\ i.e.\ \overrightarrow{z}=\left( \begin{matrix}
3 \\
0 \\
4 \\
\end{matrix} \right)\]
Now,
\[u=\dfrac{1}{2}v-w+2z\]
\[\Rightarrow u=\dfrac{1}{2}\left( \begin{matrix}
4 \\
-3 \\
5 \\
\end{matrix} \right)-\left( \begin{matrix}
2 \\
6 \\
-1 \\
\end{matrix} \right)+2\left( \begin{matrix}
3 \\
0 \\
4 \\
\end{matrix} \right)\]
Simplifying the above, we get
\[u=\left( \begin{matrix}
2 \\
\left( \dfrac{-3}{2} \right) \\
\left( \dfrac{5}{2} \right) \\
\end{matrix} \right)-\left( \begin{matrix}
2 \\
6 \\
-1 \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
Simplifying the above expression by subtracting the first two vectors we get
\[u=\left( \begin{matrix}
2-2 \\
\left( \dfrac{-3}{2}-6 \right) \\
\left( \dfrac{5}{2}-\left( -1 \right) \right) \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
Simplifying the components of the above vector, we get
\[u=\left( \begin{matrix}
0 \\
\left( \dfrac{-3}{2}-\dfrac{12}{2} \right) \\
\left( \dfrac{5}{2}+\dfrac{2}{2} \right) \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
\[\Rightarrow u=\left( \begin{matrix}
0 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{7}{2} \right) \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
Now, adding the two vectors, we get
\[u=\left( \begin{matrix}
0+6 \\
\left( \dfrac{-15}{2}+0 \right) \\
\left( \dfrac{7}{2}+8 \right) \\
\end{matrix} \right)\]
Simplifying the each component of the above vector by taking LCM, we get
\[u=\left( \begin{matrix}
6 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{7}{2}+\dfrac{16}{2} \right) \\
\end{matrix} \right)\]
Simplifying the above vector, we get
\[u=\left( \begin{matrix}
6 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{23}{2} \right) \\
\end{matrix} \right)\]
Therefore, the value of \[u=\dfrac{1}{2}v-w+2z\]is equal to the\[u=\left( \begin{matrix}
6 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{23}{2} \right) \\
\end{matrix} \right)\].
Note:Students need to remember that addition and subtraction of vectors are different from the normally performing addition and subtraction on numbers, it is because a vector contains or represents the x, y and z direction respectively. So while adding or subtracting the given vectors we can only add or subtract the value of the same direction only. And to multiply a vector by a given scalar unit, we need to multiply each component of the given vector by that given scalar unit.
Complete step by step answer:
We have given three vectors,
\[\overrightarrow{v}=\ <4,-3,5>\ i.e.\ \overrightarrow{v}=\left( \begin{matrix}
4 \\
-3 \\
5 \\
\end{matrix} \right)\]
\[\Rightarrow\overrightarrow{w}=\ <2,6,-1>\ i.e.\ \overrightarrow{w}=\left( \begin{matrix}
2 \\
6 \\
-1 \\
\end{matrix} \right)\]
\[\Rightarrow\overrightarrow{z}=<3,0,4>\ i.e.\ \overrightarrow{z}=\left( \begin{matrix}
3 \\
0 \\
4 \\
\end{matrix} \right)\]
Now,
\[u=\dfrac{1}{2}v-w+2z\]
\[\Rightarrow u=\dfrac{1}{2}\left( \begin{matrix}
4 \\
-3 \\
5 \\
\end{matrix} \right)-\left( \begin{matrix}
2 \\
6 \\
-1 \\
\end{matrix} \right)+2\left( \begin{matrix}
3 \\
0 \\
4 \\
\end{matrix} \right)\]
Simplifying the above, we get
\[u=\left( \begin{matrix}
2 \\
\left( \dfrac{-3}{2} \right) \\
\left( \dfrac{5}{2} \right) \\
\end{matrix} \right)-\left( \begin{matrix}
2 \\
6 \\
-1 \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
Simplifying the above expression by subtracting the first two vectors we get
\[u=\left( \begin{matrix}
2-2 \\
\left( \dfrac{-3}{2}-6 \right) \\
\left( \dfrac{5}{2}-\left( -1 \right) \right) \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
Simplifying the components of the above vector, we get
\[u=\left( \begin{matrix}
0 \\
\left( \dfrac{-3}{2}-\dfrac{12}{2} \right) \\
\left( \dfrac{5}{2}+\dfrac{2}{2} \right) \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
\[\Rightarrow u=\left( \begin{matrix}
0 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{7}{2} \right) \\
\end{matrix} \right)+\left( \begin{matrix}
6 \\
0 \\
8 \\
\end{matrix} \right)\]
Now, adding the two vectors, we get
\[u=\left( \begin{matrix}
0+6 \\
\left( \dfrac{-15}{2}+0 \right) \\
\left( \dfrac{7}{2}+8 \right) \\
\end{matrix} \right)\]
Simplifying the each component of the above vector by taking LCM, we get
\[u=\left( \begin{matrix}
6 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{7}{2}+\dfrac{16}{2} \right) \\
\end{matrix} \right)\]
Simplifying the above vector, we get
\[u=\left( \begin{matrix}
6 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{23}{2} \right) \\
\end{matrix} \right)\]
Therefore, the value of \[u=\dfrac{1}{2}v-w+2z\]is equal to the\[u=\left( \begin{matrix}
6 \\
\left( \dfrac{-15}{2} \right) \\
\left( \dfrac{23}{2} \right) \\
\end{matrix} \right)\].
Note:Students need to remember that addition and subtraction of vectors are different from the normally performing addition and subtraction on numbers, it is because a vector contains or represents the x, y and z direction respectively. So while adding or subtracting the given vectors we can only add or subtract the value of the same direction only. And to multiply a vector by a given scalar unit, we need to multiply each component of the given vector by that given scalar unit.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

