
Find three different irrational numbers between the rational numbers $\dfrac{5}{7}$and$\dfrac{9}{{11}}$.
Answer
567.9k+ views
Hint: In order to find three irrationals between them, we need to write three irrational numbers. An irrational number is something which cannot be expressed as fraction. In our case an irrational number between the given numbers $\dfrac{5}{7}$and$\dfrac{9}{{11}}$. So we just have to pick any non-terminating number between the given numbers.
Complete step-by-step answer:
We have to find three irrational numbers between the rational numbers $\dfrac{5}{7}$and$\dfrac{9}{{11}}$.
Irrational number is a number that cannot be expressed as a fraction for any integers and irrational numbers have decimal expansions that neither terminate nor become periodic. Every transcendental number is irrational.
The value of the given number - $\dfrac{5}{7}$= 0.7142857143…
And - $\dfrac{9}{{11}}$= 0.81818181….
So our goal is to pick an irrational number between the values of 0.7142857143 and 0.81818181,
So we pick three random irrational numbers in these limits:
Three different irrational is
$
\Rightarrow 0.71231234... \\
\Rightarrow 0.72232232.... \\
\Rightarrow 0.7542112111... \\
$
Note: In order to solve this type of problems the key is to have to write irrational numbers i.e. numbers should not be repeating or recurring. We can't write it in a fraction and we can write infinite irrational numbers between two rational numbers. Irrational numbers are normally characterized by non-ending decimal values.
Complete step-by-step answer:
We have to find three irrational numbers between the rational numbers $\dfrac{5}{7}$and$\dfrac{9}{{11}}$.
Irrational number is a number that cannot be expressed as a fraction for any integers and irrational numbers have decimal expansions that neither terminate nor become periodic. Every transcendental number is irrational.
The value of the given number - $\dfrac{5}{7}$= 0.7142857143…
And - $\dfrac{9}{{11}}$= 0.81818181….
So our goal is to pick an irrational number between the values of 0.7142857143 and 0.81818181,
So we pick three random irrational numbers in these limits:
Three different irrational is
$
\Rightarrow 0.71231234... \\
\Rightarrow 0.72232232.... \\
\Rightarrow 0.7542112111... \\
$
Note: In order to solve this type of problems the key is to have to write irrational numbers i.e. numbers should not be repeating or recurring. We can't write it in a fraction and we can write infinite irrational numbers between two rational numbers. Irrational numbers are normally characterized by non-ending decimal values.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

