Answer
Verified
454.5k+ views
Hint: In order to find three irrationals between them, we need to write three irrational numbers. An irrational number is something which cannot be expressed as fraction. In our case an irrational number between the given numbers $\dfrac{5}{7}$and$\dfrac{9}{{11}}$. So we just have to pick any non-terminating number between the given numbers.
Complete step-by-step answer:
We have to find three irrational numbers between the rational numbers $\dfrac{5}{7}$and$\dfrac{9}{{11}}$.
Irrational number is a number that cannot be expressed as a fraction for any integers and irrational numbers have decimal expansions that neither terminate nor become periodic. Every transcendental number is irrational.
The value of the given number - $\dfrac{5}{7}$= 0.7142857143…
And - $\dfrac{9}{{11}}$= 0.81818181….
So our goal is to pick an irrational number between the values of 0.7142857143 and 0.81818181,
So we pick three random irrational numbers in these limits:
Three different irrational is
$
\Rightarrow 0.71231234... \\
\Rightarrow 0.72232232.... \\
\Rightarrow 0.7542112111... \\
$
Note: In order to solve this type of problems the key is to have to write irrational numbers i.e. numbers should not be repeating or recurring. We can't write it in a fraction and we can write infinite irrational numbers between two rational numbers. Irrational numbers are normally characterized by non-ending decimal values.
Complete step-by-step answer:
We have to find three irrational numbers between the rational numbers $\dfrac{5}{7}$and$\dfrac{9}{{11}}$.
Irrational number is a number that cannot be expressed as a fraction for any integers and irrational numbers have decimal expansions that neither terminate nor become periodic. Every transcendental number is irrational.
The value of the given number - $\dfrac{5}{7}$= 0.7142857143…
And - $\dfrac{9}{{11}}$= 0.81818181….
So our goal is to pick an irrational number between the values of 0.7142857143 and 0.81818181,
So we pick three random irrational numbers in these limits:
Three different irrational is
$
\Rightarrow 0.71231234... \\
\Rightarrow 0.72232232.... \\
\Rightarrow 0.7542112111... \\
$
Note: In order to solve this type of problems the key is to have to write irrational numbers i.e. numbers should not be repeating or recurring. We can't write it in a fraction and we can write infinite irrational numbers between two rational numbers. Irrational numbers are normally characterized by non-ending decimal values.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE