
How do you find the x and y intercept of 5x+y=2 ?
Answer
452.7k+ views
Hint: In order to find the solution for this linear equation, we will first substitute $0$ for $y$ and solve for $x$ to find the $x$ -intercept. Then, we will first substitute $0$ for $x$ and solve for $y$ to find the $y$ -intercept. That is, we will use a substitution method.
Complete step by step solution:
As we know our given problem is a linear equation of line.
So when this line crosses the $y$ -axis, the $x$ -coordinate will be zero.
Also, when this line crosses the $x$ -axis, the $y$ -coordinate will be zero.
We have our equation of line as:
$5x+y=2$
when the line crosses the $y$ -axis, the $x$ -coordinate will be zero
Therefore, now we will substitute $x=0$into the equation.
This will allow us to obtain the corresponding $y$ -coordinate ($y$ -intercept).
Therefore, we get:
$5\left( 0 \right)+y=2$
$0+y=2$
$y=2$
Therefore, $y=2$ is the required $y$ -intercept.
Similarly, when this line crosses the $x$ -axis, the $y$ -coordinate will be zero.
Therefore, now we will substitute $y=0$ into the equation.
This will allow us to obtain the corresponding $x$ -coordinate ($x$ -intercept).
Therefore, we get:
$5x+0=2$
$5x=2$
$x=\dfrac{2}{5}$
Therefore, $x=\dfrac{2}{5}$ is the required $x$ -intercept.
Therefore, $x$ -intercept $=\dfrac{2}{5}$ and $y$ -intercept $=2$.
Note: The $x$ -intercept is the point where a line crosses the $x$-axis, and the $y$ -intercept is the point where a line crosses the $y$-axis. The above linear equation can be written in the form $y=mx+c$. The slope-intercept is the most “popular” form of a straight line. This is useful because of its simplicity. One can easily describe the characteristics of the straight line even without seeing its graph because the slope and $y$ -intercept can easily be identified or read off from this form.
Complete step by step solution:
As we know our given problem is a linear equation of line.
So when this line crosses the $y$ -axis, the $x$ -coordinate will be zero.
Also, when this line crosses the $x$ -axis, the $y$ -coordinate will be zero.
We have our equation of line as:
$5x+y=2$
when the line crosses the $y$ -axis, the $x$ -coordinate will be zero
Therefore, now we will substitute $x=0$into the equation.
This will allow us to obtain the corresponding $y$ -coordinate ($y$ -intercept).
Therefore, we get:
$5\left( 0 \right)+y=2$
$0+y=2$
$y=2$
Therefore, $y=2$ is the required $y$ -intercept.
Similarly, when this line crosses the $x$ -axis, the $y$ -coordinate will be zero.
Therefore, now we will substitute $y=0$ into the equation.
This will allow us to obtain the corresponding $x$ -coordinate ($x$ -intercept).
Therefore, we get:
$5x+0=2$
$5x=2$
$x=\dfrac{2}{5}$
Therefore, $x=\dfrac{2}{5}$ is the required $x$ -intercept.
Therefore, $x$ -intercept $=\dfrac{2}{5}$ and $y$ -intercept $=2$.
Note: The $x$ -intercept is the point where a line crosses the $x$-axis, and the $y$ -intercept is the point where a line crosses the $y$-axis. The above linear equation can be written in the form $y=mx+c$. The slope-intercept is the most “popular” form of a straight line. This is useful because of its simplicity. One can easily describe the characteristics of the straight line even without seeing its graph because the slope and $y$ -intercept can easily be identified or read off from this form.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE
