
Find the volume of the parallelepiped with coterminous edges as $2\hat{i}+3\hat{j}-4\hat{k},5\hat{i}+7\hat{j}+5\hat{k}$ and $4\hat{i}+4\hat{j}-2\hat{k}$
Answer
589.2k+ views
Hint: Use the fact that the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}$ and $\vec{b}$ is given by $A=\left| \vec{a}\times \vec{b} \right|$. Hence find the area of the base of the parallelepiped. Use the fact that the volume of a parallelepiped with area of base A and height H is given by $V=AH$. Hence determine the volume of the parallelepiped. Alternatively, use the fact that the volume of a parallelepiped with coterminous edges as $\vec{a},\vec{b},\vec{c}$ is given by $V=\left[ \vec{a},\vec{b},\vec{c} \right]$, we have $\left[ \vec{a},\vec{b},\vec{c} \right]$is the scalar triple product of the vectors $\vec{a},\vec{b}$ and $\vec{c}$.
Complete step by step answer:
Here $\vec{a}=2\hat{i}+3\hat{j}-4\hat{k},\vec{b}=5\hat{i}+7\hat{j}+5\hat{k}$ and $\vec{c}=4\hat{i}+4\hat{j}-2\hat{k}$
We know that the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}$ and $\vec{b}$ is given by $A=\left| \vec{a}\times \vec{b} \right|$.
Hence the area of the base of the parallelepiped is given by
\[\begin{align}
& A=\left| \left( 2\hat{i}+3\hat{j}-4\hat{k} \right)\times \left( 5\hat{i}+7\hat{j}+5\hat{k} \right) \right| \\
& =\left| 14\hat{k}-10\hat{j}-15\hat{k}+15\hat{i}-20\hat{j}+28\hat{i} \right| \\
& =\left| 43\hat{i}-30\hat{j}-\hat{k} \right|=\sqrt{{{43}^{2}}+{{30}^{2}}+{{1}^{2}}}=5\sqrt{110} \\
\end{align}\]
Also, the height of the parallelepiped is the projection of $\vec{c}$ on the normal vector of the base of the parallelogram. Note that the normal of the base is the vector $\vec{a}\times \vec{b}$ which as calculated above is given by $\vec{n}=43\hat{i}-30\hat{j}-\hat{k}$
We know that the projection of $\vec{a}$ on $\vec{b}$ is given by $\vec{p}=\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{b}} \right|}\hat{b}$
Hence the height of the parallelepiped is given by
$H=\dfrac{\left( 4\hat{i}+4\hat{j}-2\hat{k} \right)\cdot \left( 43\hat{i}-30\hat{j}-\hat{k} \right)}{\sqrt{{{43}^{2}}+{{30}^{2}}+{{1}^{2}}}}=\dfrac{54}{5\sqrt{110}}$
Hence the volume of the parallelepiped is given by
$V=5\sqrt{110}\times \dfrac{54}{5\sqrt{110}}=54$cubic units.
Hence the volume of the parallelepiped is 54 cubic units.
Note: Alternative Solution:
We know that the volume of a parallelepiped with coterminous edges as $\vec{a},\vec{b},\vec{c}$ is given by $V=\left[ \vec{a},\vec{b},\vec{c} \right]$, we have $\left[ \vec{a},\vec{b},\vec{c} \right]$is the scalar triple product of the vectors $\vec{a},\vec{b}$ and $\vec{c}$.
We know that if $\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},\vec{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k},\vec{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ then
$\left[ \vec{a},\vec{b},\vec{c} \right]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Hence, we have
$\begin{align}
& V=\left| \begin{matrix}
2 & 3 & -4 \\
5 & 7 & 5 \\
4 & 4 & -2 \\
\end{matrix} \right|=\left| 2\left( -14-20 \right)-3\left( -10-20 \right)-4\left( 20-28 \right) \right| \\
& =-68+90+32=54 \\
\end{align}$
Which is the same as obtained above.
Complete step by step answer:
Here $\vec{a}=2\hat{i}+3\hat{j}-4\hat{k},\vec{b}=5\hat{i}+7\hat{j}+5\hat{k}$ and $\vec{c}=4\hat{i}+4\hat{j}-2\hat{k}$
We know that the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}$ and $\vec{b}$ is given by $A=\left| \vec{a}\times \vec{b} \right|$.
Hence the area of the base of the parallelepiped is given by
\[\begin{align}
& A=\left| \left( 2\hat{i}+3\hat{j}-4\hat{k} \right)\times \left( 5\hat{i}+7\hat{j}+5\hat{k} \right) \right| \\
& =\left| 14\hat{k}-10\hat{j}-15\hat{k}+15\hat{i}-20\hat{j}+28\hat{i} \right| \\
& =\left| 43\hat{i}-30\hat{j}-\hat{k} \right|=\sqrt{{{43}^{2}}+{{30}^{2}}+{{1}^{2}}}=5\sqrt{110} \\
\end{align}\]
Also, the height of the parallelepiped is the projection of $\vec{c}$ on the normal vector of the base of the parallelogram. Note that the normal of the base is the vector $\vec{a}\times \vec{b}$ which as calculated above is given by $\vec{n}=43\hat{i}-30\hat{j}-\hat{k}$
We know that the projection of $\vec{a}$ on $\vec{b}$ is given by $\vec{p}=\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{b}} \right|}\hat{b}$
Hence the height of the parallelepiped is given by
$H=\dfrac{\left( 4\hat{i}+4\hat{j}-2\hat{k} \right)\cdot \left( 43\hat{i}-30\hat{j}-\hat{k} \right)}{\sqrt{{{43}^{2}}+{{30}^{2}}+{{1}^{2}}}}=\dfrac{54}{5\sqrt{110}}$
Hence the volume of the parallelepiped is given by
$V=5\sqrt{110}\times \dfrac{54}{5\sqrt{110}}=54$cubic units.
Hence the volume of the parallelepiped is 54 cubic units.
Note: Alternative Solution:
We know that the volume of a parallelepiped with coterminous edges as $\vec{a},\vec{b},\vec{c}$ is given by $V=\left[ \vec{a},\vec{b},\vec{c} \right]$, we have $\left[ \vec{a},\vec{b},\vec{c} \right]$is the scalar triple product of the vectors $\vec{a},\vec{b}$ and $\vec{c}$.
We know that if $\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},\vec{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k},\vec{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ then
$\left[ \vec{a},\vec{b},\vec{c} \right]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Hence, we have
$\begin{align}
& V=\left| \begin{matrix}
2 & 3 & -4 \\
5 & 7 & 5 \\
4 & 4 & -2 \\
\end{matrix} \right|=\left| 2\left( -14-20 \right)-3\left( -10-20 \right)-4\left( 20-28 \right) \right| \\
& =-68+90+32=54 \\
\end{align}$
Which is the same as obtained above.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

