
How do you find the vertex of the parabola given by the equation $x = {y^2} - 4y + 3$?
Answer
545.4k+ views
Hint:
The above given problem is a very simple problem of coordinate geometry. The given question is related to the concept of parabola and for solving these types of questions we first need to understand the different forms of parabolas. There are four types of parabola and for each of them, the corresponding vertex and foci are as follows:
Complete step by step solution:
Given is $x = {y^2} - 4y + 3$ and we have to find the vertex of this parabola.
As we can clearly see that the equation has a ${y^2}$ term, which means that the given equation indicates a horizontal opening parabola with equation
${\left( {y - k} \right)^2} = 4a\left( {x - h} \right)$, where $\left( {h,k} \right)$ are the coordinates of the vertex and $a$ is a multiplier.
In order to obtain the vertex form for this given equation, we use the method of completing the square.
$
\Rightarrow x = {\left( {y - 2} \right)^2} - 4 + 3 \\
\Rightarrow {\left( {y - 2} \right)^2} = x + 1 \\
$
Now, after comparing the above obtained equation with ${\left( {y - k} \right)^2} = 4a\left( {x - h} \right)$, where $\left( {h,k} \right)$ are the coordinates of the vertex, we get $h = - 1,k = 2$. So, the vertex is $\left( { - 1,2} \right)$.
Hence, the vertex of the parabola is $\left( { - 1,2} \right)$.
Note:
We can also find the vertex using the method of shifting of origin or origin transformation, but it is a very complex as well as a lengthy process. The solution shown above is the simplest one. In origin transformation, we shift the origin of the actual coordinate system, to some other arbitrary system, so as to simplify the equation and make it similar to that of the general form. However, to find the required point, we need to revert back to the original coordinate system.
The above given problem is a very simple problem of coordinate geometry. The given question is related to the concept of parabola and for solving these types of questions we first need to understand the different forms of parabolas. There are four types of parabola and for each of them, the corresponding vertex and foci are as follows:
| Equation | Vertex | Foci |
| ${y^2} = 4ax$ | $\left( {0,0} \right)$ | $\left( {a,0} \right)$ |
| ${y^2} = - 4ax$ | $\left( {0,0} \right)$ | $\left( { - a,0} \right)$ |
| ${x^2} = 4by$ | $\left( {0,0} \right)$ | $\left( {0,b} \right)$ |
| ${x^2} = - 4by$ | $\left( {0,0} \right)$ | $\left( {0, - b} \right)$ |
Complete step by step solution:
Given is $x = {y^2} - 4y + 3$ and we have to find the vertex of this parabola.
As we can clearly see that the equation has a ${y^2}$ term, which means that the given equation indicates a horizontal opening parabola with equation
${\left( {y - k} \right)^2} = 4a\left( {x - h} \right)$, where $\left( {h,k} \right)$ are the coordinates of the vertex and $a$ is a multiplier.
In order to obtain the vertex form for this given equation, we use the method of completing the square.
$
\Rightarrow x = {\left( {y - 2} \right)^2} - 4 + 3 \\
\Rightarrow {\left( {y - 2} \right)^2} = x + 1 \\
$
Now, after comparing the above obtained equation with ${\left( {y - k} \right)^2} = 4a\left( {x - h} \right)$, where $\left( {h,k} \right)$ are the coordinates of the vertex, we get $h = - 1,k = 2$. So, the vertex is $\left( { - 1,2} \right)$.
Hence, the vertex of the parabola is $\left( { - 1,2} \right)$.
Note:
We can also find the vertex using the method of shifting of origin or origin transformation, but it is a very complex as well as a lengthy process. The solution shown above is the simplest one. In origin transformation, we shift the origin of the actual coordinate system, to some other arbitrary system, so as to simplify the equation and make it similar to that of the general form. However, to find the required point, we need to revert back to the original coordinate system.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

