
Find the vector equation of the plane \[\overline{r}=\left( 2\widehat{i}+\widehat{k} \right)+\lambda \widehat{i}+\mu \left( \widehat{i}+2\widehat{j}-3\widehat{k} \right)\] in a scalar product form.
Answer
498.6k+ views
Hint: In this type of question we have to use the concept of vectors. We know that the equation \[\overline{r}=\overline{a}+\lambda \overline{b}+\mu \overline{c}\] represents a plane passing through a point whose position vector is \[\overline{a}\]. Also we know that the vector equation of the plane in scalar product form is \[\overline{r}\cdot \overline{n}\] where \[\overline{n}\] is the normal vector which is given by, \[\overline{n}=\overline{b}\times \overline{c}\]. We can derive the formula of cross product of two vectors \[\overline{A}=a\widehat{i}+b\widehat{j}+c\widehat{k}\] and \[\overline{B}=x\widehat{i}+y\widehat{j}+z\widehat{k}\] as \[\overline{A}\times \overline{B}=\left| \begin{matrix}
\widehat{i} & \widehat{j} & \widehat{k} \\
a & b & c \\
x & y & z \\
\end{matrix} \right|\]. Also we can derive the formula of dot product of two vectors \[\overline{A}=a\widehat{i}+b\widehat{j}+c\widehat{k}\] and \[\overline{B}=x\widehat{i}+y\widehat{j}+z\widehat{k}\] as \[\overline{A}\cdot \overline{B}=\left( a\times x \right)+\left( b\times y \right)+\left( c\times z \right)\].
Complete step by step answer:
Now we have to find the vector equation of the plane \[\overline{r}=\left( 2\widehat{i}+\widehat{k} \right)+\lambda \widehat{i}+\mu \left( \widehat{i}+2\widehat{j}-3\widehat{k} \right)\] in a scalar product form.
We know that the equation \[\overline{r}=\overline{a}+\lambda \overline{b}+\mu \overline{c}\] represents a plane passing through a point whose position vector is \[\overline{a}\].
Here, \[\overline{r}=\left( 2\widehat{i}+\widehat{k} \right)+\lambda \widehat{i}+\mu \left( \widehat{i}+2\widehat{j}-3\widehat{k} \right)\] comparing it with \[\overline{r}=\overline{a}+\lambda \overline{b}+\mu \overline{c}\] we get,
\[\begin{align}
& \Rightarrow \overline{a}=\left( 2\widehat{i}+\widehat{k} \right) \\
& \Rightarrow \overline{b}=\widehat{i} \\
& \Rightarrow \overline{c}=\left( \widehat{i}+2\widehat{j}-3\widehat{k} \right) \\
\end{align}\]
Also we know that the vector equation of the plane in scalar product form is \[\overline{r}\cdot \overline{n}\] where \[\overline{n}\] is the normal vector which is given by, \[\overline{n}=\overline{b}\times \overline{c}\].
Hence, the normal vector, \[\overline{n}=\overline{b}\times \overline{c}\] is given by,
\[\begin{align}
& \Rightarrow \overline{n}=\overline{b}\times \overline{c} \\
& \Rightarrow \overline{n}=\left| \begin{matrix}
\widehat{i} & \widehat{j} & \widehat{k} \\
1 & 0 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right| \\
& \Rightarrow \overline{n}=\widehat{i}\left( 0-0 \right)-\widehat{j}\left( -3-0 \right)+\widehat{k}\left( 2-0 \right) \\
& \Rightarrow \overline{n}=3\widehat{j}+2\widehat{k} \\
\end{align}\]
Also as we know that, the vector equation of the plane in scalar product form is given by \[\overline{r}\cdot \overline{n}=\overline{a}\cdot \overline{n}\]
Hence, we can write
\[\begin{align}
& \Rightarrow \overline{r}\cdot \overline{n}=\overline{a}\cdot \overline{n} \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=\left( 2\widehat{i}+\widehat{k} \right)\cdot \left( 3\widehat{j}+2\widehat{k} \right) \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=\left( 2\widehat{i}+0\widehat{j}+\widehat{k} \right)\cdot \left( 0\widehat{i}+3\widehat{j}+2\widehat{k} \right) \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=\left( 2\times 0 \right)+\left( 0\times 3 \right)+\left( 1\times 2 \right) \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=2 \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)-2=0 \\
\end{align}\]
Hence, \[\overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)-2=0\] is the required vector equation of the plane \[\overline{r}=\left( 2\widehat{i}+\widehat{k} \right)+\lambda \widehat{i}+\mu \left( \widehat{i}+2\widehat{j}-3\widehat{k} \right)\] in scalar product form.
Note: In this type of question students have to remember the vector equation of the plane \[\overline{r}\] in scalar form which is given by \[\overline{r}\cdot \overline{n}=\overline{a}\cdot \overline{n}\]. Also students have to remember the formulas of cross product and dot product of two vectors. Students have to note that in evaluation of cross product of two vectors they have to use the concept of evaluation of determinants while in case of dot product of two vectors they have to perform sum of the multiplication of the coefficients of the unit vectors i.e. \[\widehat{i}\], \[\widehat{j}\] and \[\widehat{k}\].
\widehat{i} & \widehat{j} & \widehat{k} \\
a & b & c \\
x & y & z \\
\end{matrix} \right|\]. Also we can derive the formula of dot product of two vectors \[\overline{A}=a\widehat{i}+b\widehat{j}+c\widehat{k}\] and \[\overline{B}=x\widehat{i}+y\widehat{j}+z\widehat{k}\] as \[\overline{A}\cdot \overline{B}=\left( a\times x \right)+\left( b\times y \right)+\left( c\times z \right)\].
Complete step by step answer:
Now we have to find the vector equation of the plane \[\overline{r}=\left( 2\widehat{i}+\widehat{k} \right)+\lambda \widehat{i}+\mu \left( \widehat{i}+2\widehat{j}-3\widehat{k} \right)\] in a scalar product form.
We know that the equation \[\overline{r}=\overline{a}+\lambda \overline{b}+\mu \overline{c}\] represents a plane passing through a point whose position vector is \[\overline{a}\].
Here, \[\overline{r}=\left( 2\widehat{i}+\widehat{k} \right)+\lambda \widehat{i}+\mu \left( \widehat{i}+2\widehat{j}-3\widehat{k} \right)\] comparing it with \[\overline{r}=\overline{a}+\lambda \overline{b}+\mu \overline{c}\] we get,
\[\begin{align}
& \Rightarrow \overline{a}=\left( 2\widehat{i}+\widehat{k} \right) \\
& \Rightarrow \overline{b}=\widehat{i} \\
& \Rightarrow \overline{c}=\left( \widehat{i}+2\widehat{j}-3\widehat{k} \right) \\
\end{align}\]
Also we know that the vector equation of the plane in scalar product form is \[\overline{r}\cdot \overline{n}\] where \[\overline{n}\] is the normal vector which is given by, \[\overline{n}=\overline{b}\times \overline{c}\].
Hence, the normal vector, \[\overline{n}=\overline{b}\times \overline{c}\] is given by,
\[\begin{align}
& \Rightarrow \overline{n}=\overline{b}\times \overline{c} \\
& \Rightarrow \overline{n}=\left| \begin{matrix}
\widehat{i} & \widehat{j} & \widehat{k} \\
1 & 0 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right| \\
& \Rightarrow \overline{n}=\widehat{i}\left( 0-0 \right)-\widehat{j}\left( -3-0 \right)+\widehat{k}\left( 2-0 \right) \\
& \Rightarrow \overline{n}=3\widehat{j}+2\widehat{k} \\
\end{align}\]
Also as we know that, the vector equation of the plane in scalar product form is given by \[\overline{r}\cdot \overline{n}=\overline{a}\cdot \overline{n}\]
Hence, we can write
\[\begin{align}
& \Rightarrow \overline{r}\cdot \overline{n}=\overline{a}\cdot \overline{n} \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=\left( 2\widehat{i}+\widehat{k} \right)\cdot \left( 3\widehat{j}+2\widehat{k} \right) \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=\left( 2\widehat{i}+0\widehat{j}+\widehat{k} \right)\cdot \left( 0\widehat{i}+3\widehat{j}+2\widehat{k} \right) \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=\left( 2\times 0 \right)+\left( 0\times 3 \right)+\left( 1\times 2 \right) \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)=2 \\
& \Rightarrow \overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)-2=0 \\
\end{align}\]
Hence, \[\overline{r}\cdot \left( 3\widehat{j}+2\widehat{k} \right)-2=0\] is the required vector equation of the plane \[\overline{r}=\left( 2\widehat{i}+\widehat{k} \right)+\lambda \widehat{i}+\mu \left( \widehat{i}+2\widehat{j}-3\widehat{k} \right)\] in scalar product form.
Note: In this type of question students have to remember the vector equation of the plane \[\overline{r}\] in scalar form which is given by \[\overline{r}\cdot \overline{n}=\overline{a}\cdot \overline{n}\]. Also students have to remember the formulas of cross product and dot product of two vectors. Students have to note that in evaluation of cross product of two vectors they have to use the concept of evaluation of determinants while in case of dot product of two vectors they have to perform sum of the multiplication of the coefficients of the unit vectors i.e. \[\widehat{i}\], \[\widehat{j}\] and \[\widehat{k}\].
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

