
Find the vector and Cartesian equation in symmetric form of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
Answer
465k+ views
Hint:
Here, we will first calculate the direction ratios of the given line. Then, we will use the formula for vector equation and cartesian equation of a line, and substitute the values to find the vector and Cartesian equation in symmetric form of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
Formula Used:
We will use the following formulas:
1. The direction ratios of a line segment joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] are given by \[{x_2} - {x_1}\], \[{y_2} - {y_1}\], and \[{z_2} - {z_1}\].
2. The vector equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b \], where \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\], and \[\overrightarrow b = a\hat i + b\hat j + c\hat k\].
3. The Cartesian equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}\], where \[a\], \[b\], and \[c\] are the direction ratios.
Complete step by step solution:
First, we will find the direction ratios of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
Let the direction ratios of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\] be \[a\], \[b\], and \[c\] respectively.
The direction ratios of a line segment joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] are given by \[{x_2} - {x_1}\], \[{y_2} - {y_1}\], and \[{z_2} - {z_1}\].
Substituting \[{x_1} = 2\], \[{y_1} = 0\], \[{z_1} = - 3\], \[{x_2} = 7\], \[{y_2} = 3\], and \[{z_2} = - 10\] in the formula for direction ratios, we get
\[{x_2} - {x_1} = 7 - 2 = 5\]
\[{y_2} - {y_1} = 3 - 0 = 3\]
\[{z_2} - {z_1} - 10 - \left( { - 3} \right) = - 10 + 3 = - 7\]
Therefore, we get
\[a = 5\]
\[b = 3\]
\[c = - 7\]
Now, we will find the vector equation of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
The vector equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b \], where \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\], and \[\overrightarrow b = a\hat i + b\hat j + c\hat k\].
Substituting \[{x_1} = 2\], \[{y_1} = 0\], \[{z_1} = - 3\], \[a = 5\], \[b = 3\], and \[c = - 7\] in the equations \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\] and \[\overrightarrow b = a\hat i + b\hat j + c\hat k\], we get
\[\overrightarrow a = 2\hat i + 0\hat j - 3\hat k = 2\hat i - 3\hat k\]
\[\overrightarrow b = 5\hat i + 3\hat j - 7\hat k\]
Substituting \[\overrightarrow a = 2\hat i - 3\hat k\] and \[\overrightarrow b = 5\hat i + 3\hat j - 7\hat k\] in the vector equation of a line joining two points, we get
\[\overrightarrow r = \left( {2\hat i - 3\hat k} \right) + \lambda \left( {5\hat i + 3\hat j - 7\hat k} \right)\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow \overrightarrow r = 2\hat i - 3\hat k + 5\lambda \hat i + 3\lambda \hat j - 7\lambda \hat k\]
Factoring the terms, we get
\[ \Rightarrow \overrightarrow r = \left( {2 + 5\lambda } \right)\hat i + \left( {3\lambda } \right)\hat j - \left( {3 + 7\lambda } \right)\hat k\]
Thus, the vector equation of the given line is \[\overrightarrow r = \left( {2 + 5\lambda } \right)\hat i + \left( {3\lambda } \right)\hat j - \left( {3 + 7\lambda } \right)\hat k\].
Now, we will find the Cartesian equation of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
The Cartesian equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}\], where \[a\], \[b\], and \[c\] are the direction ratios.
Substituting \[{x_1} = 2\], \[{y_1} = 0\], \[{z_1} = - 3\], \[a = 5\], \[b = 3\], and \[c = - 7\] in the Cartesian equation of a line joining two points, we get
\[\dfrac{{x - 2}}{5} = \dfrac{{y - 0}}{3} = \dfrac{{z - \left( { - 3} \right)}}{{ - 7}}\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{{x - 2}}{5} = \dfrac{y}{3} = \dfrac{{z + 3}}{{ - 7}}\]
Thus, the Cartesian equation of the given line is \[\dfrac{{x - 2}}{5} = \dfrac{y}{3} = \dfrac{{z + 3}}{{ - 7}}\].
Note:
We have used the distributive law of multiplication to multiply \[\lambda \] by \[\left( {5\hat i + 3\hat j - 7\hat k} \right)\]. The distributive law of multiplication states that \[a\left( {b + c + d} \right) = a \cdot b + a \cdot c + a \cdot d\].
We can also find the vector equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] directly using the formula \[\overrightarrow r = \overrightarrow a + \lambda \left( {\overrightarrow b - \overrightarrow a } \right)\], where \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\], \[\overrightarrow b = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\], and \[\lambda \in R\].
Similarly, we can also find the cartesian equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] directly using the formula \[\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}\].
Here, we will first calculate the direction ratios of the given line. Then, we will use the formula for vector equation and cartesian equation of a line, and substitute the values to find the vector and Cartesian equation in symmetric form of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
Formula Used:
We will use the following formulas:
1. The direction ratios of a line segment joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] are given by \[{x_2} - {x_1}\], \[{y_2} - {y_1}\], and \[{z_2} - {z_1}\].
2. The vector equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b \], where \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\], and \[\overrightarrow b = a\hat i + b\hat j + c\hat k\].
3. The Cartesian equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}\], where \[a\], \[b\], and \[c\] are the direction ratios.
Complete step by step solution:
First, we will find the direction ratios of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
Let the direction ratios of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\] be \[a\], \[b\], and \[c\] respectively.
The direction ratios of a line segment joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] are given by \[{x_2} - {x_1}\], \[{y_2} - {y_1}\], and \[{z_2} - {z_1}\].
Substituting \[{x_1} = 2\], \[{y_1} = 0\], \[{z_1} = - 3\], \[{x_2} = 7\], \[{y_2} = 3\], and \[{z_2} = - 10\] in the formula for direction ratios, we get
\[{x_2} - {x_1} = 7 - 2 = 5\]
\[{y_2} - {y_1} = 3 - 0 = 3\]
\[{z_2} - {z_1} - 10 - \left( { - 3} \right) = - 10 + 3 = - 7\]
Therefore, we get
\[a = 5\]
\[b = 3\]
\[c = - 7\]
Now, we will find the vector equation of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
The vector equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b \], where \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\], and \[\overrightarrow b = a\hat i + b\hat j + c\hat k\].
Substituting \[{x_1} = 2\], \[{y_1} = 0\], \[{z_1} = - 3\], \[a = 5\], \[b = 3\], and \[c = - 7\] in the equations \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\] and \[\overrightarrow b = a\hat i + b\hat j + c\hat k\], we get
\[\overrightarrow a = 2\hat i + 0\hat j - 3\hat k = 2\hat i - 3\hat k\]
\[\overrightarrow b = 5\hat i + 3\hat j - 7\hat k\]
Substituting \[\overrightarrow a = 2\hat i - 3\hat k\] and \[\overrightarrow b = 5\hat i + 3\hat j - 7\hat k\] in the vector equation of a line joining two points, we get
\[\overrightarrow r = \left( {2\hat i - 3\hat k} \right) + \lambda \left( {5\hat i + 3\hat j - 7\hat k} \right)\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow \overrightarrow r = 2\hat i - 3\hat k + 5\lambda \hat i + 3\lambda \hat j - 7\lambda \hat k\]
Factoring the terms, we get
\[ \Rightarrow \overrightarrow r = \left( {2 + 5\lambda } \right)\hat i + \left( {3\lambda } \right)\hat j - \left( {3 + 7\lambda } \right)\hat k\]
Thus, the vector equation of the given line is \[\overrightarrow r = \left( {2 + 5\lambda } \right)\hat i + \left( {3\lambda } \right)\hat j - \left( {3 + 7\lambda } \right)\hat k\].
Now, we will find the Cartesian equation of the line passing through the points \[\left( {2,0, - 3} \right)\] and \[\left( {7,3, - 10} \right)\].
The Cartesian equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] is given by \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}\], where \[a\], \[b\], and \[c\] are the direction ratios.
Substituting \[{x_1} = 2\], \[{y_1} = 0\], \[{z_1} = - 3\], \[a = 5\], \[b = 3\], and \[c = - 7\] in the Cartesian equation of a line joining two points, we get
\[\dfrac{{x - 2}}{5} = \dfrac{{y - 0}}{3} = \dfrac{{z - \left( { - 3} \right)}}{{ - 7}}\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{{x - 2}}{5} = \dfrac{y}{3} = \dfrac{{z + 3}}{{ - 7}}\]
Thus, the Cartesian equation of the given line is \[\dfrac{{x - 2}}{5} = \dfrac{y}{3} = \dfrac{{z + 3}}{{ - 7}}\].
Note:
We have used the distributive law of multiplication to multiply \[\lambda \] by \[\left( {5\hat i + 3\hat j - 7\hat k} \right)\]. The distributive law of multiplication states that \[a\left( {b + c + d} \right) = a \cdot b + a \cdot c + a \cdot d\].
We can also find the vector equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] directly using the formula \[\overrightarrow r = \overrightarrow a + \lambda \left( {\overrightarrow b - \overrightarrow a } \right)\], where \[\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\], \[\overrightarrow b = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k\], and \[\lambda \in R\].
Similarly, we can also find the cartesian equation of a line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\] directly using the formula \[\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
